
Explicit Inversive PseudorandomNumber Generators
Diplomarbeitzur Erlangung des Magistergradesan der Naturwissenschaftlichen Fakult�atder Universit�at Salzburg
eingereicht vonOtmar Lendl

Salzburg, im November 1996

Contents
1 Introduction 51.1 What do we need Pseudo-Random Numbers for ? : : : : : : : : : 51.2 Criteria for PRN Generator Selection : : : : : : : : : : : : : : : : 71.2.1 Reproducibility : 81.2.2 Statistical properties : 81.2.3 Empirical Test Results : 91.2.4 Possibility of Theoretical Analysis : : : : : : : : : : : : : : 91.2.5 Results of Theoretical Analysis : : : : : : : : : : : : : : : 91.2.6 E�ciency : 101.2.7 Practical Aspects : 111.3 Important Types of PRN Generators : : : : : : : : : : : : : : : : 111.3.1 The Linear Congruential Generator : : : : : : : : : : : : : 121.3.2 Shift-register Generators : : : : : : : : : : : : : : : : : : : 131.3.3 The Inversive Congruential Generator : : : : : : : : : : : : 131.3.4 The Explicit Inversive Congruential Generator : : : : : : : 141.3.5 EICG Variants : 151.3.6 Compound Techniques : 162 The Notion of \Randomness" 172.1 Randomness by Intuition : 172.2 Formalizing the Intuitive Notion : : : : : : : : : : : : : : : : : : : 202.3 Randomness in Mathematical Terms : : : : : : : : : : : : : : : : 222.3.1 Random Variables and Probability : : : : : : : : : : : : : 242.3.2 Testing : 261

2 CONTENTS2.3.3 Interpreting Test Results : : : : : : : : : : : : : : : : : : : 313 Theoretical Results 333.1 Relations between di�erent EICG : : : : : : : : : : : : : : : : : : 343.2 Structural Properties : 373.3 Correlation Analysis : 413.3.1 Background : 413.3.2 Auxiliary Results : 453.3.3 Bounds : 483.4 Other Results : 554 Empirical Tests 564.1 Digit Test : 564.2 Overlapping Serial Test : 624.3 Run Test : 674.4 Weighted Spectral Test : 694.5 Other Results : 735 Implementation 745.1 Overview : 745.2 Modular Inversion : 755.3 Modular Multiplication : 785.4 Modular Addition : 806 Summary 83

As a rule, random number generators are fragile and need to be treated withrespect. It's di�cult to be sure that a particular generator is good without anenormous amount of e�ort in the various statistical test.The moral is: do your best to use a good generator, based on the mathematicalanalysis and the experience of others; just to be sure, examine the numbers tomake sure that they \look" random; if anything goes wrong, blame therandom-number generator !{ Robert Sedgewick, in \Algorithms" (Second Edition, 1988)

3

I'd like to thank everybody who helped to make this thesis become reality.Peter for his patience, trust and guidance; Charly, Hannes, Karin, and Stefanfor the most creative, helpful and entertaining working environment I have everexperienced; and my mother for her unwavering support.

4

Chapter 1IntroductionThe purpose of this thesis is to discuss the implementation of the explicit inversivecongruential generator (EICG) and the properties of the resulting pseudorandomnumbers. But before we delve into the details of the implementation or thetheoretical and empirical results we will take a closer look at the basic conceptof pseudo-random numbers.What do we mean when we talk about pseudorandom numbers (PRN) ?And for what purpose do we devise such elaborate means to arti�cially generatemegabytes of digital noise ?1.1 What do we need Pseudo-Random Num-bers for ?To the uninitiated, all this pseudo-random numbers \business" seems to have noserious applications. Everybody will come up with computer games as a �eldwhere pseudo-random numbers are used to make the behaviour of the computerless predictable. Steering the movements of some on-screen monster does notrequire a high standard of randomness, almost any algorithmwill su�ce, providedit is easy to implement and does not cost too much computing resources.Another domain where we need PRN is wherever we need to model a more orless random phenomenon of the real world. The simulation of a roulette table orother forms of lottery might still be in the area of non-serious application, buthere the defects of the generator start to be an issue. Imagine this scenario: youtry to develop a winning strategy for blackjack and use a simulation to test youralgorithm. Any correlation between statistical defects and the strategy will leadto a skewed result and may even change the sign of the expected outcome. Playingthat strategy in a real casino might cost you dearly. Thus it is important to make5

6 CHAPTER 1. INTRODUCTIONthe choice of the generator an issue even in such non-scienti�c applications.Simulation of random events is far from being limited to gambling, a signi�cantpercentage of all simulations of natural phenomena contains a random compo-nent. Whether that may be quantum e�ects, rainfall on a certain area, Brownianmotion, absorption pattern, bifurcation of tree roots, failure of technical compo-nents, solar activity : : : , in all cases we know at best the statistical properties ofan event. An analytical solution of the given problem based on probabilities isoften not possible. Thus one has to resort to stochastic simulation (see [3, 47, 74])where one calculates the result of the overall simulation by choosing possible out-comes of the underlying random events according to their respective probability.Doing this a number of times should provide enough samples of the outcome toestimate the probability of each possible result. Needless to say, the selection ofthe realisations of the underlying random events is crucial to the correctness ofthe whole calculation. Since this selection is done with the aid of PRN, theirquality plays an important role in the whole process.Finding the use of PRN in stochastic simulation is not that surprising, but�nding them in algorithms for such mundane tasks like integration might needsome more explanation. Numerical integration is a common problem in a greatdeal of real world problems. A big battery of algorithms (trapezoid method,Simpson's method, spline quadrature, adaptive quadrature, Runge-Kutta, : : :)was developed to minimize the calculation costs while increasing the accuracyof the result. All these methods scale very badly with the dimension of theintegral, so a completely di�erent approach is more appropriate there. The MonteCarlo method (see [3, 47, 77, 83]) uses randomly selected samples of the functionto estimate the integral. Provided we know more about the behaviour of thefunction (i.e. its total variation) and the distribution of the actual samples used(as measured by their discrepancy), the inequality of Koksma-Hlawka (See page44, [50, 69]) will give an error bound for this method. Since it is generally notpossible to calculate the exact value of the discrepancy of the random numbersused for the integration, this error bound will only be a probabilistic one. Inorder to get a deterministic one, the random numbers, which determine whichsamples of the function will be evaluated, are replaced by numbers for which theorder of the discrepancy is known. This turns the Monte Carlo method into theQuasi-Monte Carlo method.One way to get such good point sets is to explicitly construct them with thatgoal in mind (See [69] for a discussion of (t;m; s)-nets and other methods.) oruse a PRNG for which an upper bound on the discrepancy is known. This isone of the reasons why we will take a close look at this quantity in Section 3.3.Not all applications of Quasi-Monte Carlo integration are labeled as such, as thebasic algorithm can be regarded as a simple heuristic. For example, distributedray tracing [31, p. 788] uses a set of randomly distributed rays to implement

1.2. CRITERIA FOR PRN GENERATOR SELECTION 7spatial and temporal antialiasing which amounts to an integration over both thetime-frame of the picture and the pixel's spatial extension.Non-deterministic algorithms often use pseudorandom numbers, too. Thesealgorithms are used to tackle problems for which a deterministic solution takestoo much time. Although they cannot guarantee success, they promise to �nd thesolution (or a sub-optimal one) within reasonable time. Examples for this kindof algorithm are Pollard's rho heuristic [8, p. 844] for integer factorization, theRabin-Miller primality test [8, p. 839], Simulated Annealing [30], and ThresholdAccepting [11].Other algorithms use pseudorandom numbers for a di�erent purpose. Insteadof using them directly for solving the problem they are used to randomize theproblem (or the algorithm) in order to avoid running into the same worst-casebehaviour again and again. See [8, p. 161] for an explanation of the rationalebehind randomized quick-sort.Some cryptographic algorithms and protocols require a good source of ran-dom numbers, too. Stream ciphers [76, p. 168f], for example, use the output ofa PRNG (termed keystream generator) to encrypt the plaintext. The securityof this cipher depends largely on the statistical quality of the keystream. Anyregularities of the PRNG can be used by the attacker to predict the next bitsand thus crack the code. No other domain of PRNG applications has such a highdemand on the \randomness" of the generated PRN. Algorithms which are goodenough for stochastic simulations are typically way too predictable to be usefulas a keystream generator for a stream cipher. Thus the �eld of cryptograph-ically secure PRNG has amazingly little in common with the study of PRNGfor stochastic simulation on which we will focus in this thesis. Information oncryptographically secure pseudorandom numbers can be found in [51], [81], and[76].Another application of pseudo-random numbers in the �eld of cryptology isproviding the \random" numbers needed for a variety of cryptographic protocols.A well known example are the session keys generated for each transaction inhybrid cryptosystems. As the recent debacle involving the Netscape Navigator[32, 68] has shown, one must be very careful not to use a simple PRNG for thistask. Since this is more a matter of how to get the entropy needed for non-predictability than one of analysing the properties of sequences of PRN we willnot elaborate on this subject in this thesis.1.2 Criteria for PRN Generator SelectionNow that we know a bit about the various applications of PRN, let's try toformulate a few criteria for the selection of a good PRN generation algorithm. As

8 CHAPTER 1. INTRODUCTIONwe will see later it is crucial for the selection of the right PRNG to keep an eyeon the application of the PRN.1.2.1 ReproducibilityThis criterion may sound strange at �rst sight, since reproducibility contradictsthe intuitive notion of randomness, and indeed, real random number generatorsare extremely unlikely to ever repeat their output. So what are the advantages of agenerator which will produce the same sequence of pseudorandom numbers whenfed with the same parameters ? Once again, we have to turn to the applicationof which the generator is a component. In the case of a stochastic simulation thebene�t is twofold:� As a scienti�c experiment, it should be possible to redo the same calculationsunder the same conditions. This ensures that an independent veri�cation ofthe obtained result is possible.� Debugging and verifying the simulation program is greatly helped by thepossibility of replaying the calculation. Otherwise it may not be possible todetermine if an unexpected outcome is caused by a systematic error in thesimulation setup, or whether it is just a statistic
uke.In some areas, for example stream ciphers, reproducibility is a key requirementfor the application. Only very few applications, most of them in the area ofcryptography, do actually bene�t from the use of non-reproducible PRN.1.2.2 Statistical propertiesIt is clear that when we want to simulate a random variable with a PRNG, thenthe output of the generator should model as closely as possible the expectedbehaviour of instances of the random variable. If a simulation of a dice generatesa 7 or strongly favors the 6 we will not accept the generator. Other deviationsfrom the desired behaviour, e.g. correlations, are harder to detect, and methodsfor systematically testing generators for such de�ciencies have been the subjectof considerable mathematical work [49, 27, 53, 84], including some parts of thisthesis.As we will see later, proving that a generator really has all the statisticalproperties a real random number generator is supposed to have, is not possible.So all we can do is to establish faith in the generator by testing it for someproperties.

1.2. CRITERIA FOR PRN GENERATOR SELECTION 91.2.3 Empirical Test ResultsEmpirical testing usually involves using the PRN for a stochastic simulation witha known result. If the computed results contradict the expected ones, the gen-erator will be dismissed as not suitable for that kind of stochastic simulation. Apassed test will increase the faith that this generator will yield correct results inreal world problems. We will examine the signi�cance of empirical test resultslater in greater details.A large battery of such tests was developed over the years, from the wellknown tests of Knuth [49] and Marsaglia [65] to recent additions like the weightedspectral test [39, 40, 45, 43]. See [53, x3.5.] for further references on testingpseudorandom number generators.1.2.4 Possibility of Theoretical AnalysisIn order to make analytical investigations possible, most modern PRNG are de-�ned in quite simple mathematical terms. It is a tradeo�: The simpler thealgorithm, the easier it will be to prove statements concerning the quality of thegenerated numbers. On the other hand, a convoluted algorithm appeals to theintuition. History has shown [49, 73] that quite a few people could not resistthe temptation to build generators based on doing obscure transformations onnumbers stored in computers. Empirical analysis has shown that the quality ofsuch generators are often abysmal.1.2.5 Results of Theoretical AnalysisDoing empirical studies on the properties of a PRNG is always possible, butderiving properties of the generator output by pure mathematical study has alot of advantages. Whereas an empirical test can only cover one speci�c set ofparameters of a generator, it is sometime possible to make analytically provenstatements on the properties of PRN generated by a certain generator regardlessof the parameters used. In the same vein, an empirical test on a speci�c part ofthe generator's output, say the �rst billion numbers, may give us con�dence onthe behaviour of the next billion numbers, but cannot o�er any guarantee thatthey will be equally good. Analytical results fall in the following categories:� Basic parameter selectionFor most generators not all possible parameters will result in a functionalgenerator. A typical question is that of gaining the largest possible periodlength. For the LCG1 this is just a set of simple conditions, for the ICG1See 1.3 for the de�nition of this and other generators.

10 CHAPTER 1. INTRODUCTIONit involves �nding IMP polynomials [6, 29, 44, 41, 42, 24]. For compoundgenerators to work it is also necessary to obey certain analytically derivedconstraints.� Properties of the resulting PRNFor some generators it is possible to derive statements on some aspects ofthe output. The well-known fact that tuples of LCG generated numbersform lattices (see page 37) is one example.� Estimates and boundsEspecially the discrepancy has been the subject of analytical study. Thereare numerous estimates and bounds for various generators.1.2.6 E�ciencyWith all the mathematical discussions about the merits of PRN generated by anew algorithm one should not forget the fact that we need to actually implementthis algorithm on a real computer. There are a few things which should be notedhere:� Implementation costsImplementing (i.e. programming) an algorithm is usually a one-time invest-ment of e�ort. Once the code is there, integrating it into a larger projectis more or less trivial. What are the di�culties in implementing a typicalpseudorandom number generation algorithm ? As we will see later in Chap-ter 5, the main problem lies in the handling of large integers and performingstandard mathematical operations like addition and multiplication on them.For inversive generators �nding the multiplicative inverse in Z�p is a requiredoperation, too.� Computational costsThe execution of any algorithm requires both CPU and memory resources.Typical PRNG (EICG, LCG, ICG, : : :) have only very small memory re-quirements. The code is very compact and the state information does onlyrequire a few bytes.As far as CPU consumption is concerned, a PC with Intel 486DX2-66 pro-cessor is capable of executing the EICG algorithm about 70000 times in asecond. The author's implementation of the LCG runs at about 400000 PRNper second. The highly optimized system pseudorandom number generatorruns at over 700000 calls per second. These numbers are only provided togive a rough feeling for the speed of the algorithms when using a modulusin the range of 231.

1.3. IMPORTANT TYPES OF PRN GENERATORS 11� Implications for the overall running timeAs the generation of the PRN is usually performed on demand on the samecomputer as the stochastic simulation for which they are used, they competefor the same resources. The total running time for the simulation can bedescribed as the sum of the time used for the PRN generation plus thetime used for doing the actual calculations. The latter often dominates theformer, thus it does not make sense to try to gain overall speed by sacri�cingquality in the PRN algorithm.1.2.7 Practical AspectsAfter implementing the algorithm one has to �nd good parameters for that gen-erator, too. Fortunately, for some common PRNG tables containing suitableparameters have been published [28, 42, 2, 82], so there is no need to reinvent thewheel there. Other generators like the EICG are known to be rather insensitiveto the choice of the parameters.Another aspect is the possibility to generate independent streams of pseudo-random numbers. Such streams are needed for parallel or vectorized computing.See [54, x8], [1], [12], and [35] for more information on this topic.1.3 Important Types of PRN GeneratorsThere is no shortage on proposed pseudorandom number generation algorithms.Every year new ideas on this topic are published, but only if the resulting PRNhave been subject to intensive theoretical and empirical study the generator mighthave a chance to get used in a real world problem. As it is often the case withcompeting inventions, an objective technological superiority does not immedi-ately lead to market domination. Whether the generator is included in standardprogramming libraries seems to be much more important than any publishedresults on the distribution properties of the numbers. A classic example is thenow infamous RANDU generator which was included in IBM's Fortran libraryand features an extremely poor distribution of triples composed of subsequentnumbers.The following list introduces some of the most commonly used generatorsas well as the inversive generators on which we will focus in this thesis. Morecomplete surveys on the current menagerie of PRNG can be found in [69, 71, 54].In the following M denotes a positive integer (termed modulus) and ZM =f0; 1; : : : ;M � 1g represents the system of all residues modulo M . With theaddition and multiplicationmoduloM the set ZM acquires the algebraic structure

12 CHAPTER 1. INTRODUCTIONof a �nite ring. If the context makes it clear that we operate in the ring (ZM;+; �)we will omit the trailing \mod".1.3.1 The Linear Congruential GeneratorDe�nition 1.1 Let a; b; y0 2 ZM . The linear congruential generator (abbreviatedas \LCG") with parameters M; a; b; and y0 de�nes a sequence (yn)n�0 in ZM byyn := a � yn�1 + b (n > 0)and a sequence (xn)n�0 of pseudorandom numbers in [0; 1[byxn := ynM (n � 0):As the sequence lcg(p; a; b; y0) = (yn)n�0 is de�ned by a recursion of order oneon a �nite set it must be periodic. The longest possible period length is M inthe case of b 6= 0 and M � 1 in the case of b = 0. The necessary conditions forachieving these period lengths are well known. [69, p. 169]The LCG is very popular. Its implementation is quite simple, especially if Mis chosen as 2 to the power of bits per native word of the computer (e.g. 232)which reduces the modulo operations to just ignoring the over
ow. Due to itssimplicity and popularity the LCG has been subjected to intensive analytical andempirical examination. The quality of the resulting PRN depends very much onthe choice of the parameters M; a; and b. Fortunately, tables containing goodparameters have been published, see [28, 26, 52].The output of a LCG shows a strong intrinsic structure ([64], see also p.37). A number of modi�cations were proposed to improve the quality of thegenerator. One approach is to extend the recursion to higher orders by making yna function of yn�1; : : : ; yn�r. Other proposals modify the function which describesthe recursion. As the name says, the LCG uses the linear function f(yn) =a � yn�1+ b (mod M) to calculate yn from yn�1. If we replace f by an arbitraryfunction, we refer to the resulting PRNG as a general �rst-order congruentialgenerator [69, p. 177]. In order to guarantee maximal period length, the functionf must be carefully selected. For example, the quadratic congruential method, asproposed by Knuth in [49, x3.2.2] uses a polynomial of degree 2 as the recursionand a power of 2 as the modulus. See [69, p. 181f] for the conditions on theparameters and analytical investigation on the resulting PRN.

1.3. IMPORTANT TYPES OF PRN GENERATORS 131.3.2 Shift-register GeneratorsShift-register generators di�er from standard linear congruential generators intwo respects. First, they use a higher-order linear recursion of the formyn+k � k�1Xh=0 ahyn+h (mod M) (n � 0) (1.1)where M � 2 is the modulus, k � 1 is the order of the recursion and a0; : : : ; ak�1are elements of ZM . Second, instead of just scaling the yn to the unity interval toget the pseudorandom numbers, the xn are calculated from a block of consecutivevalues yn; : : : ; yn+m. Thus it is no longer necessary to use a large modulus to geta decent resolution of the resulting PRN. In order to simplify and optimize theimplementation of recursion, the common choice ofM is the prime 2. On a L-bitcomputer this allows the grouping of L steps into one operation.Two techniques for the transformation of the sequence (yn)n�0 into a sequenceof pseudorandom numbers in [0; 1[are commonly used: The digital multistepmethod puts xn = mXj=1 ymn+j�1 p�j 2 [0; 1[(n � 0): (1.2)The Tausworthe generator [80] is a special case of this method.More popular is the generalized feedback shift-register method (GSFR) whichcan take advantage of the above mentioned blocking of L bits if h1; : : : ; hm � 0are selected suitably: xn = mXj=1 yn+hj p�j 2 [0; 1[(n � 0): (1.3)If the parameters are carefully selected the period length will in both cases beper(xn) = pk � 1.Shift register pseudorandom numbers have the advantage of a fast generationalgorithm and a period length independent of the limitations of the integers usedfor the calculation. See [69, Chapter 9] and [54] for a discussion on the propertiesof shift register pseudorandom numbers.1.3.3 The Inversive Congruential GeneratorA promising modi�cation of the LCG was proposed by Eichenauer and Lehn in[14]. We will only consider the case of a prime modulus p =M here. It involvesthe operation of modular inversion in Zp which we will denote by an overline (c).c = (c�1 for c 2 Zp; c 6= 00 for c = 0 (1.4)

14 CHAPTER 1. INTRODUCTIONThe restriction to prime moduli guarantees the unique existence of an inversiveelement in Zp. This de�nition implies cc � 1 (mod p) for c 6= 0.De�nition 1.2 Let p be a (large) prime and a; b; y0 2 Zp. The inversive congru-ential generator (abbreviated as \ICG") with parameters p; a; b; and y0 de�nes asequence (yn)n�0 in Zp byyn := a � yn�1 + b (n > 0)and a sequence (xn)n�0 of pseudorandom numbers in [0; 1[byxn := ynp (n � 0):Empirical as well as analytical investigations indicate that the output of anICG is superior to the output of a LCG in several respects: longer usable samplesizes [84, 60], less correlations between consecutive numbers [71].1.3.4 The Explicit Inversive Congruential GeneratorAnalytical calculations have led to the following observation: We can describe thegenerator as a function mapping n to yn. This self-map n 7! yn in the �nite �eldZp can be written as a uniquely de�ned polynomial g with degree d < p. If wedemand the sequence (yn)n�0 to have the maximal possible period length p, thepolynomial g maps Zp onto itself and thus must be a permutation polynomial,which is either linear (d = 1) or satis�es 3 � d � p � 2 according to [63, Cor.7.5]. It turns out that the degree d plays an important role in the analyticalexamination of the generator in a sense that a higher degree seems to indicatebetter distribution properties [69, Theorems 8.2, 8.3] (see p. 55). The theoremof Euler-Fermat tells us that evaluating cp�2 corresponds to the calculation ofthe multiplicative inverse. In this spirit, the de�nition2 of the EICG seems quitenatural:De�nition 1.3 Let p be a (large) prime and a; b; n0 2 Zp. The explicit inversivecongruential generator (abbreviated as \EICG") with parameters p; a; b; and n0de�nes a sequence (yn)n�0 in Zp byyn := a � (n0 + n) + b (n � 0)and a sequence (xn)n�0 of pseudorandom numbers in [0; 1[byxn := ynp (n � 0):2The original de�nition does not include n0.

1.3. IMPORTANT TYPES OF PRN GENERATORS 15As long as a 6= 0 this generator will always have period length p. Onceagain analytical and empirical investigations have shown that the output of thisgenerator is superior to that of an LCG. This will be the generator on which wewill focus our attention in this thesis. The other generators mainly serve as areference against which the EICG must compete.1.3.5 EICG VariantsTwo variations of the basic explicit inversive congruential generator have beenproposed. Both proposals substitute the prime modulus p withM = 2! (! � 4).In the set ZM we can de�ne the modular inversion only for odd integers. Thisinversion is once again de�ned by cc = 1 (mod M) for all odd c.De�nition 1.4 (Eichenauer-Herrmann and Ickstadt [21]) Let M be a power of2, and a; b; n0 2 ZM with a � 2 mod 4 and b � 1 mod 2. The explicit inversivecongruential generator with power of two modulus with parameters p; a; b; and n0de�nes a sequence (yn)n�0 in ZM byyn := a � (n0 + n) + b (n � 0)and a sequence (xn)n�0 of pseudorandom numbers in [0; 1[byxn := ynp (n � 0):The conditions on a and b guarantee that the sequence x0; x1; : : : is purelyperiodic with periodM=2. While powers of 2 as modulus have certain advantagesfor the implementation of the generator, all theoretical investigations [21, 15] onthe quality of the resulting numbers have concluded that this generator is inferiorto the original EICG.In order to achieve a period length of M , Eichenauer-Herrmann [16] proposedthe following generator:De�nition 1.5 Let M be a power of 2, and a; b; n0 2 ZM with a � 2 mod 4 andb � 1 mod 2. The modi�ed explicit inversive congruential with parameters p; a; b;and n0 de�nes a sequence (yn)n�0 in ZM byyn := n � a � (n0 + n) + b (n � 0)and a sequence (xn)n�0 of pseudorandom numbers in [0; 1[byxn := ynp (n � 0):Although this modi�cation does indeed increase the period length to M , thetheoretically derived properties of the resulting numbers are still inferior to theoriginal EICG.

16 CHAPTER 1. INTRODUCTION1.3.6 Compound TechniquesAn interesting meta-generator is the compound method. This is a very simpleand e�ective way to combine several streams of PRN into one single sequencewith (hopefully) superior properties. It works as follows: For 1 � j � r letx(j)0 ; x(j)1 ; x(j)2 ; : : : be a purely periodic sequence of pseudorandom numbers. Thenwe get the compound sequence x0; x1; : : : byxn = rXj=1x(j)n mod 1 for n = 0; 1; : : : :If the subsequences are purely periodic with distinct period per(x(j)n) = pj, thenwe have per(xn) = Qrj=1 pj.This compound method extends the well-known approach of Wichmann andHill [87]. The properties of the resulting sequence has been subject to a numberof publications; I refer to Niederreiter [71, 4.2] for all the references. Generallyspeaking, the compound method preserves the basic properties of the underlyinggenerators.

Chapter 2The Notion of \Randomness"Examining what we mean by random numbers will help us to understand thedi�culties in generating pseudo-random numbers and interpreting test results.We will look at how we all intuitively deal with supposedly random sequences,and touch upon the mathematical treatment of the subject. Regrettably, we willnot be able to comprehensively cover this topic, thus we will focus on the subjectof testing (�nite) sequences of PRN.2.1 Randomness by IntuitionFirst of all, we want to take a closer look at the intuitive notion of randomness.For one, we all intuitively assign probabilities to various events we encounter,from such mundane things like which side a dropped slice of bread will land on,every-day events like rainfall, the number of red tra�c lights encountered, orfriends met in the bus, to explicitly random events like the outcome of a dice orthe weekly lottery.But how do we come to the conclusion that one of these events is somehowrandom ? What are the criteria for that decision ? In some of the example abovethe decision is easy as we know about the process which leads to the outcome.Watching the dice being cast properly is a sure way to convince oneself that theoutcome is indeed truly random. But how do we proceed when we cannot lookbehind the scenes, when the sequence of outcomes is the only information wehave got ?The human mind has remarkable capabilities to spot regularities in a sequenceof events. If it fails to notice anything suspicious it will declare the sequence tobe random.Let's test this notion on the most widely used source of random numbers,17

18 CHAPTER 2. THE NOTION OF \RANDOMNESS"the dice. A dice is supposed to select one of the numbers 1; : : : ; 6 in a fair andindependent fashion each time it is cast. In the following list we will argue onthe merits of a few possible outcomes.1f2g If we cast the dice just once, each of the possible outcomes are equally likely.All sequences of length one are thus equally good.f2, 4g There is nothing wrong with this sequence, too.f6, 6g Casting doublets is not uncommon in the real world, thus they are notreason enough to doubt the fairness of the dice.f1, 2, 3g A sequence of length 3 is too short to arouse any suspicion, too. Suchsimple patterns (runs up, runs down, only even numbers, only odd ones,only primes, : : :) are actually quite likely to occur.f1, 2, 3, 4, 5, 6, 1g With increasing length it is possible that a more clearlyvisible pattern emerges within the numbers. Would you accept such a se-quence as generated by a real dice ? As these things still happen every nowand then in real life, the common answer to this question seems to be \Yes,as long as this doesn't happen too often.".f4, 2, 2, 2, 4, 2, 4g This sequence will give reason to doubt the fairness of thedice. Whether the perceived skew is reason enough to outright reject thesequence as random is a tricky question. After all, a real dice will show suchirregularities from time to time, too.f6, 6, 6, 6, 6, 6, 6, 6g Although theoretical a possible outcome of a dice, thissequence will probably not be accepted as such.f6, 3, 2, 1, 2, 5, 4, 1, 6g At the �rst glance, this sequence looks quite random,but closer scrutiny shows that it features alternately even and odd numbers.As the probability for this to happen purely by chance is pretty small, onegets suspicious about the \randomness" of the sequence.f1,3,4,6,5,3,2,1,1,3,4,6,5,5,4,2,1g This one looks inconspicuous, too. But ifyou draw the graph of the sequence you will notice a regularity: There aretoo many long ascending or descending subsequences. As these long \runs"should not appear that frequently in random sequences, this one does notseem to be random.f1,2,5,4,3,6,6,2,4,1,3,5,5,2,3,4,1,6g What about this sequence ? Can you seeany regularity in it ? Once again, a casual look will not �nd anything sus-picious, the distribution of the numbers seems to be balanced, consecutive1Imagine a friend casts the dice behind your back and announces the following outcomes.Would you believe him to have correctly reported the numbers when he announces the followinglists ?

2.1. RANDOMNESS BY INTUITION 19numbers do not have any special relation and there is nothing wrong with theruns, too. Actually, the numbers are balanced way too good as all six num-bers appear before the �rst one gets repeated. In other words, the sequenceconsists of three permutations of f1, : : : , 6g. If the equidistribution of thenumbers is so perfect, the randomness of the sequence must be challenged.f3,2,5,2,1,4,4,6,2,3,4,5,2,5,6,3,3,1,5,4g This sequence has a hidden regular-ity, too. In previous sequences we have looked for correlations betweenconsecutive numbers. If we generalize this and take a closer look at num-bers n steps apart, we have a more versatile tool for �nding regularities. Itturns out that ai + ai+10 = 7 holds for all values of i. Such a \long range"correlation should not happen in random sequences.Did you see the one big fault in this sequence of would-be random sequences ?We did not notice it because we looked only at single sequences. Can you �nd itnow ?2Let us summarize the arguments:� If the sequence has properties we do not expect to be present in randomnumbers, we get suspicious.If we argue about the \randomness" of a given sequence we try to �ndreasons for rejecting it as random. There seems to be no way of asserting asequence to be random, it is only the absence of arguments to the contrarythat will lead to con�dence in the sequence. The proper formulation inthe language of statistics is the following: The null hypothesis is always toassume the sequence was indeed generated by a random process with wellknown statistical properties. As we will see later, it is not possible to reversethe problem and regard the non-randomness as the null hypothesis.� Longer sequences are easier to judge.Short sequences are likely to contain some sort of perceived regularity, thusit is hard to reject such a sequence based on a suspicious pattern. If thesequence is long enough to check if the pattern continues to appear in it,one can try to determine if the pattern is part of some systematic fault orjust coincidence.� There are a lot of ways a sequence can be suspicious.Just when we thought we have found a sequence which does not exhibitthe patterns we have found in all the previous faulty ones, it turns out thatthere is a di�erent kind of regularity in it. Somehow this is just like the trickquestion for the �rst natural number without any special properties. If such2Try summing each sequence up. It should be obvious then.

20 CHAPTER 2. THE NOTION OF \RANDOMNESS"a number existed, the very fact would make it special, thus there can be nosuch number. We almost get the same feeling when we examine sequencesfor their non-conspicuousness. As there are so many ways a sequence canexhibit a pattern, a complete absence of patterns is just as conspicuous asany weak regularity.Furthermore, it is worth pondering if there are not so many patterns thatall sequences will exhibit one. We will take a closer mathematical look atthis question later.� \Perfect randomness" is an oxymoron.If the \random" sequence exhibits exactly the expected distribution thiswill cause suspicion, too. A random sequence is supposed to deviate fromits distribution. The common measure for this is the variation. A sequencewith a perfect distribution will fail to have the same variation a randomsequence is supposed to have.As the variation can be viewed as just another test statistic, it, too, shouldvary in a certain way. From that point of view, a constant and perfectvariation is just as suspicious as a constant and perfect distribution. Thisreasoning leads to the demand that not only the distribution of the numbersshould be as wanted, but also that the empirical higher moments should beclose to the values predicted by probability theory.2.2 Formalizing the Intuitive NotionNow that we have examined what we intuitively mean by saying \This sequencelooks random." we can try to formalize this notion and develop a set of propertieswe want to check if we have to judge a sequence and its generating algorithm.The goal in this formalisation is to be able to delegate the testing to computerprograms. As computers are known to be very bad at spotting patterns, it willnot be an easy undertaking to �nd an algorithm which does as good as the humanmind. We can only hope that all systematic faults in the sequence will eventuallycause a suspicious behaviour of the sequence in a generic test.In the following we abandon the dice as the example, and turn to uniformlydistributed numbers in the interval [0; 1[.Distribution:The �rst step in testing a sequence is usually to test its distribution charac-teristics. That is, are the numbers equally spread over [0; 1[?In order to test the (empirical) distribution one partitions the interval [0; 1[in sets Ai and compares the number of hits in each set to the size (measure)of that interval.

2.2. FORMALIZING THE INTUITIVE NOTION 21In the discrete case this can be done by simply counting how often eachpossible value appears in the sequence. If the counts di�er signi�cantly, thedistribution property of the sequence is inadequate.In order to keep the problem manageable in the case of a huge number ofpossible outcomes and in the continuous case, the bins (i.e. the Ai) used forcounting will cover more than one outcome.The layout of the partition is a crucial part of the test: If the Ai are simpleintervals the test will measure the overall distribution of the sequence. Butthe Ai could be the union of a set of small intervals, in which case the testtargets irregularities in the �ne structure of the sequence.Once we have �nished the counting process we need some mathematicallyjusti�ed criteria for interpreting the di�erence between the number of hits ineach Ai and the expected count. There are a number of possible algorithmsfor this, the most popular of which are the �2-test and the Kolmogorov-Smirnov test (often abbreviated as KS-test). The former uses a test statisticbased on the di�erence between expected and actual count in each bin,whereas the latter compares the empirical distribution function of the countsto the expected one.Correlations:It should be clear that any numbers in a deterministically generated andthus reproducible sequence are trivially correlated. Therefore it makes nosense to look for such intricate dependencies like the generation rule in thesequence. We will restrict our search to much simpler correlations, whichmakes additional sense because that will be the only kind of correlations wecan hope to �nd with the limited capabilities of a computer program. Thereare two approaches to this:Tests for special correlations check if the sequence exhibits a given kindof regularity. An often used example is the run-test which measures thefrequency of ascending or decreasing parts in the sequences. The distributionof these runs in random sequences is known, making it possible to judge thesequence with respect to this type of correlation.The serial test is a more general way of examining a sequence. It transformsthe problem of testing for correlation to the problem of testing for equidis-tribution by looking at tuples composed of elements from the sequence. Thesize of each tuple is called the dimension s � 2 of the test. Common testsuse either overlapping tuples de�ned as xn := (xn; xn+1; : : : ; xn+s�1), or non-overlapping tuples de�ned as xn := (xsn; xsn+1; : : : ; xsn+s�1). If there are nocorrelations in the original sequence the s-tuples are equidistributed in theunit cube of dimension s, which can be checked using the techniques outlinedabove.

22 CHAPTER 2. THE NOTION OF \RANDOMNESS"To illustrate this, let us examine the sequence f1; 4; 2; 6; 2; 3; 4; 1; 5; 3; 2; 5gwith the serial test of dimension 2.
1234
56

1 2 3 4 5 6
Overlapping pairs� �
�

�� � �
� ���

1234
56

1 2 3 4 5 6
Non-overlapping pairs� �� � ��

As you can see, the fact that large and small numbers alternate causes asigni�cant deviation from the equidistribution of the points.For a number of generators it is possible to derive analytical bounds for thedeviation from the equidistribution of s-dimensional tuples as measured bythe discrepancy.If one does not restrict oneself to form tuples out of consecutive numbers, theresulting test will be able to �nd more subtle kinds of correlations withoutresorting to high dimensions s. While this modi�cation hardly changes theempirical testing, only in the case of the EICG analytical bounds have beenderived for this generalized serial test.2.3 Randomness in Mathematical TermsNow that we have clari�ed the intuitive understanding of the concept of testingpseudorandom sequences, we will turn to the mathematical treatment of thesubject. Rather than providing a full scale discussion of the mathematical objectsand formalisms involved, which would exceed the scope of this thesis, we wantto present an introduction targeted at the mathematical layman. Our aim inthis section is to introduce as much of relevant concepts as is necessary to beable to explain the problems one faces when testing pseudorandom numbers andcomparing PRNG. We refer to [84] for an in-depth discussion.There is more than one mathematical approach to this topic. The followinglist tries to introduce the di�erent viewpoints and gives references for furtherreading.� Number-theoretic approach.In our context, this branch of mathematics focuses on the equidistributionof a sequence of numbers.

2.3. RANDOMNESS IN MATHEMATICAL TERMS 23Various measures for the quality of the equidistribution were developed overthe years, of all these numbers, the discrepancy is the most common.Theorems on the equidistribution usually deal with in�nite sequences, thusthey are not particularly useful in conjecture with �nite (or periodic) se-quences. For example, equidistribution of a sequence can be de�ned interms of the discrepancy in the following way:(xi)1i=0 equidistributed () limN!1DN(x1; : : : ; xN) = 0See [50, 69, 71] for further reading.� Kolmogorov complexity and information theory.This approach targets the complexity and information content of the se-quence in question. One of the possible measurements is the minimal size ofa computer a program (or a Turing machine) which can reproduce the se-quence. In the optimal case, the program code will have to explicitly containthe sequence in order to print it. Any possible shortcuts the program can use(like exploiting dependencies) will be a measure for the lack of randomnessof the sequence.Since all our sequences are generated by short programs, they a-priori failthis test. Thus we will not consider this notion in our tests.A similar approach is to focus on the amount of information contained inthe sequence. If the entropy is high enough, we will accept the sequenceas a good approximation of random numbers. Another way to express thisnotion is to state that the sequence is not compressible.Testing whether a sequence is compressible is not easy since all common im-plementations cannot achieve the theoretically possible compression. Onlyreally bad PRN can be eliminated with programs like gzip or compress. Ex-tending the capabilities of these programs (for example enlarging the rangeof the pattern search in gzip) might be a way to get a workable test. As faras we know, nobody has tried this yet.For larger sequences, the distinction between these ideas start to blur, asthe size of the information needed to transform one representation into theother becomes irrelevant.See Lagarias [51], Ming/Vit�any [66] and Chaitin [5].� Cryptographic considerations.A sequence of PRN can be used to construct a stream cipher. If \truerandom" numbers are used, this cipher is called the one-time pad and isprovably secure. So it is natural to ask what properties the PRN must haveto achieve a good level of security.

24 CHAPTER 2. THE NOTION OF \RANDOMNESS"According to Rueppel [75] there are several approaches to the constructionof a secure stream cipher: The information-theoretic approach considers thepossibility in principle to derive the seed (i.e. the key) from an observationof the PRN, the system-theoretic approach tries to make breaking the cipherat least as hard as solving known \hard" problems like factoring or thediscrete logarithm. The complexity-theoretic approach tries to make surethat the amount of work needed to break the cipher is of non-polynomialcomplexity, randomized stream ciphers increase the magnitude of the code-breaker's problem by utilizing a public pool of random numbers.See [76, 75] for a discussion of these ideas.� Statistical approach.The basic idea of statistical testing can be summarized as follows: Froma sample of supposedly random numbers a function called test statistic iscalculated. As the distribution of this function is known for the case of realrandom numbers (otherwise the test does not make sense), one can determinewhich kind of results are extremely unlikely to occur. Typically this isformulated as intervals in the domain of the test statistic. These intervals(usually called critical region) are selected in a way that the probability thatreal random numbers lead to a test statistic there is smaller than the level ofsigni�cance (usually 0.05, 0.01 or 0.005). If now for a sample of PRNG thetest statistic falls into the critical region the common inference is to rejectthe sample.See [49, 4, 53] for further reading.All common tests rely on the idea of statistical testing. In the following wewill try to elaborate on the motivation behind these tests, their mathematicalfoundation, their power and limitations, and how to interpret their results.2.3.1 Random Variables and ProbabilityFirst of all, let us take a closer look at what we want to simulate. Our tar-get are sequences of random numbers, which are realisations of a sequence ofindependent, uniformly distributed random variables.Random variables (RVs) are one of the main building blocks in probabilitytheory. They are used to assign each possible outcome (or, to be more exact, eachreasonable set of outcomes) of an experiment a real number which is interpretedas the probability of this outcome.But strictly speaking, the mathematical concept of RVs does not explicitlyre
ect our intuitive ideas about randomness of events, on the contrary: RVs arejust simple, ordinary functions. One is tempted to ascribe mythical powers to

2.3. RANDOMNESS IN MATHEMATICAL TERMS 25RVs, like the ability to randomly select one of a set of possible events. This isnot true, they only describe certain aspects of an idealized system which
ips themetaphorical coin.So where is the link between the mathematical world of RVs and the real lifeworld of roulette tables ? Unfortunately there is none for single events. Even ifa RV does in fact model a real world event, hardly any conclusions can be madeabout the outcome of the next single event. Even such unlikely events as winningthe jackpot in a lottery do happen every now and then, and most people are notdeterred by the extremely bad odds from playing every week. On the other handsome people are scared of travelling by plane because the probability of a safe
ight is marginally less than one. In both cases our experience tells us that theprobability alone cannot predict the next outcome.But even such pretty de�nite sounding statements like \this event will occurwith probability 1" cannot guarantee the outcome of an event. More insight intomeasure theory will tell us why such strange things can happen. For example, theprobability that the next realisation of an U([0; 1[)-distributed random variablewill be a rational number is zero. This does not stop the real world from deliveringone of the in�nite number of rational numbers, thus rendering the statement \Thisexperiment will only return irrational numbers" incorrect.We have seen that a RV cannot make concrete statements about a singleoutcome, so we might ask what statements about outcomes it can make at all.One way to formulate the meaning of probability is the following: [84, p. 10]The probability assigned to an event expresses the expected average rateof occurrences of the event in an unlinked sequence of experiments.We need to elaborate on two aspects of this de�nition as they are not as strictand unambiguous as commonly demanded from a good de�nition.First, what do we mean by \expected" ? That seems to indicate that proba-bility cannot be an intrinsic property on an event. There is no mathematicallysatisfying way to assign a probability to an event based on a (�nite3) set of mea-surements, as it is extremely unlikely that another set of experiments will resultin the same value. The common way out is to make assumptions about someparts of the experiment, like the Laplace assumption which assigns the sameprobability to all underlying events. These assumptions are based on a men-tal model of that event which includes a theory on how often something shouldoccur. It is the mathematician, the physicist or just some observer who formsa mental model based on experiences or consideration. Such simplifying mentalmodels of the real world are ubiquitous as they provide an essential simpli�cationin the way we view the world. Other such simpli�cations include the concept of3It is possible to prove convergence as the number of measurements increases. [84, p. 20]

26 CHAPTER 2. THE NOTION OF \RANDOMNESS"rigid bodies,
uids, or gases which are abstractions of \a bunch of molecules tiedtogether by various forces". Just as the laws of leverage rely in their formulationon the concept of forces and of rigid bodies the laws of chance depend on theconcept of probability assigned to events.The other critical word in the above de�nition is \unlinked". By unliked wemean that the outcome of one experiment does not in
uence the outcome ofany subsequent experiment. Common examples for unlinked experiments includedrawing balls from an urn (with putting them back in !), casting a dice, or theroulette wheel. Please note that in all these examples there is a connectionbetween two successive experiments as the �rst one does in
uences the second.It is a conscious decision by the observer that the re-shu�ing of the balls in theurn caused by the �rst experiment does not a�ect the probability in the secondone. This sounds almost like a paradox, as the re-shu�ing surely does e�ect theoutcome. But remember, just above we noted that the probability of an eventdoes not determine the next outcome at all, so there is not contradiction here.We have to be careful with sequences of PRN and their relation to independentrandom variables, too. The concept of independence is based on the concept ofdistributions. As we cannot ascribe distributions to numbers, we cannot use theterm \independence" for sequences of PRN. We will use the word correlations torefer to any unwanted relationship between elements in the sequence.2.3.2 TestingAs described above, the theory of random variables and probability tries to modelaspects of the physical world. The fundamental principles of science demandjusti�cation in form of experiments for all such theories. For typical physicalmodels such experiments are usually easy to set up and follow the same schemeof comparing an expected (calculated) result to the measurements of the actualphysical event. If they di�er more than inaccuracies in the measurements wouldallow, the theory is proven to be wrong. Philosophy of Science tells us that it isimpossible to positively prove a theory.Do the same principles hold for conjectures in the �eld of probability, too ?Unfortunately, they do not. Let us illustrate this with an example:As a theory to test we might take the assumption that a given coin is fair,meaning that the probability it lands with the heads side up is 1=2. How mightan experiment designed to test this hypothesis look like ? Surely it will involvethrowing the coin a number of times and then comparing the result to the predic-tion. Calculating the prediction based on the theory is simple, unfortunately theprediction assigns each possible outcome a positive probability. Thus regardlessof the behaviour of the coin the result is consistent with the theory, as we cannot

2.3. RANDOMNESS IN MATHEMATICAL TERMS 27rule out the measured result. If we have no way to reject a theory, we have to�nd a di�erent set of criteria according to which we can justify theories.The common way out is statistical testing. It should be clear that statisticaltesting can never be as strict as testing in other areas. It is a heuristic approachto the problem. As such, it relies on the good judgement of the tester and is notobjective. But before we elaborate on the shortcomings of statistical testing letus summarize the basic procedure again, already using the test for randomnessas the example.1. The �rst step is to formulate the hypotheses. In our case the null hypothesisH0 states that the source of our pseudorandom numbers can be modeled asa RV with distribution U([0; 1[).The alternative hypothesis H1 states that H0 is not true.2. We de�ne a function called test statistic which maps the result of an ex-periment into some mathematical domain. Typical test statistics for testinguniform PRN are the number of runs, the discrepancy, the �2-statistic, : : : .See [49, 53, 69, 65] for further test statistics.3. A level of signi�cance � is selected which de�nes how strict the test will beand how much leeway we will accept for the PRN. Common values for � are0:05 or 0:01.4. Using the (hopefully) known distribution of the test statistic for the case ofH0 being true, we determine the critical region C which is the area in thedomain of the test statistic which covers its extreme, unlikely values. Thevalue for � is used to quantify what we mean by \extreme" and \unlikely"in such a way that P (test statistic 2 C j H0) � �.5. Now the pseudorandom numbers are generated and are used to to calculatethe test statistic. If the value for the test statistic falls into C we say thatthe PRN have failed the test and we have reason to believe that H1 is true,otherwise the test is passed and we have no reason to reject H0.This is the basic outline of all common empirical tests. We will discuss a fewtests and their results later in this thesis. So what are the weak spots in thismethod of testing pseudorandom numbers ?� PRN are not experiments.First of all, when testing sequences of numbers generated by a PRNG basicpremises of statistical testing are violated.The theory behind statistical testing assumes that we actually deal withrandom events. It is thus a circular argument to conclude from the result of

28 CHAPTER 2. THE NOTION OF \RANDOMNESS"such a test that the numbers in question are \random". Only their statisticalproperties that are subject to the test, not the basic premise that the conceptof random variables is a valid model for that experiment.It is therefore not correct to speak of \statistical testing" with respect toPRN testing. A more appropriate term is \numerical testing" as the testexamines only a numerical property of a �xed set of numbers.The only \statistical" part of the test is the calculation what numerical val-ues for the test statistic are considered to be good and which are consideredto be bad.� The test statistic is arbitrary.The test statistic determines which aspect of the numbers we want to test.Dividing [0; 1[into the intervals h in ; i+1n h for 0 � i < n, counting the hits ineach interval, and then calculating the �2 statistic is a straight-forward teststatistic which aims the the overall equidistribution of the pseudorandomnumbers in [0; 1[. The choice of the bins (in this case intervals) seems to bea natural one.But what bins should we use to measure the �ner aspects of equidistribu-tion ? We could use just a large value for n and keep the intervals, butthat would cause a problem with the validity of the �2 approximation asthe number of hits per bins decreases. An other option is to use somethinglike this: De�ne bin i as fx 2 [0; 1[: bx � kc � i (mod n)g for some suitablevalues for k and n. Then the bins are no longer simple intervals, but sets ofintervals that are spread over the unity interval. The value for k determinesthe width of each component interval.Is there a natural choice for k ? We do not think so. But the choicecan be important as the result of the test depends on it. Consider forexample the set of numbers de�ned by fi=m j 0 � i < mg which is perfectlyequidistributed in[0; 1[. Fro certain relations between k, n and m, like k jm �n, then the test will result in extremely bad �2 statistics. As an example,consider the case k = n �m where all numbers i=m fall into the same bin.For other values of k, this set of PRN will exhibit no weakness in this test.We have seen that even such simple changes to the test statistic, like modi-fying the width of stripes, can completely change the result of the test. Onecan imagine that completely di�erent layouts of bins will lead to a greatvariance in the test results, too. Thus we have to keep in mind that thechoice of the test statistic, and thus to some extent the result of the test, isarbitrary.One consequence of this fact is that we cannot declare one sequence of PRNto be better than a second one just because we found a test where the

2.3. RANDOMNESS IN MATHEMATICAL TERMS 29�rst one rates better, as a slightly modi�ed test might produce exactly theopposite result.� Good PRN have to fail some tests.What we strive for are numbers who behave in most respects like realisationsof U([0; 1[)-distributed RVs, so it is a natural question how such ideal randomnumbers will perform in our statistical test. The answer to this is quitesimple: If we conduct a test at the signi�cance level � then a sequence ofrandom numbers will fail the test with probability �. If we have set � = 0:01then we can expect a failure about once every hundred tries.As PRN should model all aspects of real random numbers, they should failstatistical tests at about the same rate.4It is therefore not advisable to outright reject a sequence of PRNbased on its failure in single tests.� The variance of the test statistic can be important, too.Classic statistical tests examine if the test statistic does not deviate from itsexpected value too much. If we are only interested in the expected outcomeof a similar simulation problem, such one-level statistical tests are all weneed in order to be con�dent about the accuracy of the simulation.On the other hand we might be interested in the distribution of the simula-tion's outcome. For this goal hitting the expected value is not enough, thevariance of the result is now important, too. Thus we will demand the samebehaviour from the test statistic, too.Let us illustrate this principle with an example. We want to test the wellknown strategy of doubling the ante in a game of roulette. It is supposedto guarantee winning the initial ante and works like this: If we do not winin the �rst round (and therefore win twice the ante) the ante is doubled forthe next round. If this round is won, we get back four times the initial antewhile we invested three times the initial ante resulting in a net win of oneante. In case of bad luck we double the ante again hoping for eight times theante for an investment of seven. As we hope that we will �nally win beforeour capital is drained a net win seems to be certain.In order to simulate this we need random numbers to determine whether wewill win the current bet. The probabilities are 18=37 for winning and 19=37for losing each round, respectively. It seems to be natural to use the lengthsof runs as a test statistic to test our source of PRN for its �tness to simulatea real roulette table. The probability that the maximal run length in 500tries is greater than 15, is smaller than all usual values for �, so according to4The number of failed tests could be viewed as a test statistic, too. Therefore the sequenceof PRN which passes all common level-1 tests will surely fail this meta-test.

30 CHAPTER 2. THE NOTION OF \RANDOMNESS"the corresponding statistical test we should reject all sequences where suchruns do occur.5When we now run the simulation with these prescreened sequences we willnever ever experience a loss as long as we have enough money for 15 stepsof doubling the ante. Thus we should conclude that the strategy works. Aswe know, this is not true. So what went wrong with our simulation ?The statistical test considered it equally important whether the sequence inquestion was \well-behaved" or not, whereas the simulation assigned com-pletely di�erent weights to those cases. Thus the area that the test consid-ered to be insigni�cant (smaller than �) played a major role in the simulation(more than 1=2).There are some other cases of simulations where we are not so much inter-ested in the average case, but in the extreme ones. Consider for exampleall those safety measures in power plants or other machinery where a raresequence of occurrences might lead to catastrophic results. When simulatingthese security systems one must not a priori exclude unusual sequences.Please note that the distinction between level-1 and level-2 tests (tests whichtest the distribution of the results of a level-1 test) is arbitrary. The teststatistic of a level-2 test is just another function of the underlying set ofPRN, too.� Statistical tests cannot be used to objectively rate PRN.One might be tempted to use a set of statistical test to once and for all declareone generator superior to another generator. Intuitively this makes sense,especially when comparing two generators of the same type. A common usefor this heuristic is the selection of optimal parameters for the LCG basedon its lattice structure [28, 72].But is this judgement mathematically justi�ed ? Leeb explains in [58] thatsuch judgement is not justi�ed as all possible sequences of PRN of a given�nite length pass exactly the same number of statistical tests.In order be able to use statistical tests as a criteria for the selection of PRNGthe user has to declare which properties he considers important. With thisknowledge it is possible to weight the tests and therefore select a suitablegenerator for this speci�c application.� Statistical tests are simulations with a known result.Both statistical tests and simulations use a set of PRN to perform a moreor less elaborate calculation.calculation(PRN) = (test statisticsimulation result5See [8, p.130] for bounds on these probabilities.

2.3. RANDOMNESS IN MATHEMATICAL TERMS 31In a statistical test we draw a conclusion from the right side to left: Basedon the di�erence between expected and calculated value we judge the qualityof the PRN.A simulation operates the other way round. Based on the (hopefully) knownquality of the PRN we hope that the simulation result is correct.While generic statistical tests can be used for this reasoning, one can increasetheir value by designing the tests to closely model the simulation. Thus thetests can target exactly those properties in the PRN which will be signi�cantin their application.2.3.3 Interpreting Test ResultsIn order to conclude this chapter on the notion of randomness let us recapitulatewhat we know about testing a generator, and how we should proceed when weface the task of selecting a generator for a particular simulation problem.1. Statistical testing cannot guarantee that the tested generator will performequally well in a real world simulation. Only if we are able to determinewhich aspects of randomness are important for the simulation and specif-ically test our source of pseudorandom numbers for these aspects, we canmathematically justify our con�dence in the validity of the simulation [58].2. Empirical testing should be supplemented by analytical investigations intothe quality of the generator. Such calculations are often essential to guaran-tee basic properties like period length, as well as to provide means to selectsuitable parameters to avoid pitfalls like a degenerated lattice in the case oflinear generators.Furthermore, analytical investigations can yield some insight in the overallstructure of a generator's output which can be compared to the propertiesrequired in the simulation. The lattice structure of the LCG might be ac-tually useful in Quasi-Monte Carlo integration whereas it can be harmful ingeometric problems, e.g. the nearest-pair test [14, 53].3. Level-one tests target only the expected value of the test statistic. Oftenthis is not enough, making it necessary to test the distribution of the teststatistic. Such two-level tests guarantee that the proper irregularities arepresent in the PRN, too. Whether we should strive for such variance in thegenerator is up to its �nal application.4. Rejecting a generator is rejecting one facet of randomness. It is self-deceptionto claim that one rejects a generator based on its lack of randomness. Onecan only state that one does not want that particular aspect of randomness.

32 CHAPTER 2. THE NOTION OF \RANDOMNESS"Sequences we will intuitively classify as non-random may be important asinput for the simulation in order to get correct results.5. As we have seen before, the results of a test can be extremely sensitive to itsparameters. Thus statements like \generator x passes the y-test" have littlerelevance unless the exact parameters used in the test and in the generatorare published, too.6. The result of a single test is not enough to assess the quality of generator.Only a battery of tests and comparisons to the performance of other gener-ators in the same test suite enable the mathematician to pass judgement ona generator.

Chapter 3Theoretical ResultsIn this chapter we will discuss analytically derived properties of the explicit in-versive congruential generator (EICG). We will use results obtained for the LCGto serve as a reference as the LCG is the most commonly used generator. Let usstart by repeating the de�nition of the EICG:Let p be a (large) prime and a; b; n0 2 Zp. The explicit inversivecongruential generator (abbreviated as \EICG") with parametersp; a; b; and n0 de�nes a sequence (yn)n�0 in Zp byyn := a � (n0 + n) + b (n � 0) (3.1)and a sequence (xn)n�0 of pseudorandom numbers in [0; 1[byxn := ynp (n � 0):
Please remember that we perform all calculations except the �nal scaling inthe �nite �eld Zp = f0; 1; 2; : : : ; p� 1g. Z�p will denote the non-zero elements ofZp, that is Z�p = f1; 2; 3; : : : ; p � 1g. The over-line a denotes the multiplicativeinversion in Zp for all non-zero elements a 2 Z�p. With the special case 0 = 0added, x 7! x is a bijective function from Zp onto Zp. Furthermore, we havex = x and x = xp�2 for all x 2 Zp. The latter identity is due to Fermat's LittleTheorem.Note that from the explicit de�nition of the sequence (yn)n�0 we can easily33

34 CHAPTER 3. THEORETICAL RESULTSderive a recursive description:y0 = a � n0 + byn+1 = yn + a (n � 0) (3.2)In order to achieve maximal period length p, the parameters a,b, and n0 canbe freely chosen from Zp as long as p is prime and a 6= 0. To see this, considerthe function f(n) := a � (n0 + n) + b which is composed of bijective functions inZp and thus is bijective, too. As n+ p = n in Zp we have f(n+ p) = f(p) for alln, thus the sequence (yn)1n=0 is purely periodic with period length p.We will only consider full period generators, that is a 6= 0.We will write eicg(p; a; b; n0) to denote the output of a particular instance of theEICG method. Unlike Leeb [58, p. 89] we mean the whole in�nite (but periodic)sequence, and not just the �rst p numbers. This way, no special treatment ofwrap-arounds is needed when considering subsequences.3.1 Relations between di�erent EICGThe choice of parameters is simple for an EICG, but not all choices will lead tocompletely di�erent pseudorandom numbers. In this section we will examine therelations between EICGs with the same modulus, but di�erent parameters a, b,and n0.These results are helpful for the implementation, as one can eliminate anaddition modulo p, as well as to the theoretical investigation as they provide avery elegant way to describe sub-streams. We will elaborate on this idea whichis due to Niederreiter [70, p. 5] later on.First of all, let us make a rather trivial observation on the role of the parametern0.Observation 3.1 Let (yn)n�0 = eicg(p; a; b; 0). Then we can write the sequenceeicg(p; a; b; n0) as (yn)n�n0. In other words, the second sequence is �rst one shiftedby n0.Proof: This relation follows from the fact that n and n0 appear only as theirsum n + n0 in the de�nition of the EICG.The following observation is taken from Leeb [58, p. 89]; it states that one ofthe parameters is redundant.

3.1. RELATIONS BETWEEN DIFFERENT EICG 35Observation 3.2 Let p be prime and a 2 Z�p be �xed. Then we have for allb; n0 2 Zp eicg(p; a; b; 0) = eicg(p; a; 0; ab) (3.3)eicg(p; a; 0; n0) = eicg(p; a; an0; 0) (3.4)and eicg(p; a; b; n0) = eicg(p; a; 0; n0 + ab) = eicg(p; a; an0 + b; 0): (3.5)Proof: We base the proof on the recursive de�nition of the EICG. As therecursion does only depend on a, which is constant, it is su�cient to show thatthe y0 of these generators are equal. In the �rst two cases we havea � 0 + b = y0 = a � ab+ 0a � n0 + 0 = y0 = a � 0 + an0;and the third equality translates toy0 = a � n0 + b = a � (n0 + ab) = a � 0 + (an0 + b):The third equality can be used to rewrite any EICG as an EICG with b = 0,but a di�erent value for n0. Thus the generating formula can always be rewrittenas yn := a � (n00 + n) (n � 0)which saves one addition. The addition n00 + n can be implemented by simplyincrementing the previous value modulo p, thus we need to perform only oneincrement, one multiplication, one inversion, and one division to generate thenext pseudorandom number.There is an obvious connection between eicg(p; a; b; kn0) and eicg(p; ka; b; n0),too:1Observation 3.3 Let p be prime, a; k 2 Z�p, and b 2 Zp.The sequence eicg(p; ka; b; n0) can be obtained by selecting every k-th elementfrom the sequence eicg(p; a; b; kn0).Proof: The sequence generated by taking every k-th element in the sequenceeicg(p; a; b; kn0) = (yn)n�0 can be written as (ykn)n�0. We haveyn = a � (kn0 + n) + b1This is a generalisation of Lemma 5.3 in [58].

36 CHAPTER 3. THEORETICAL RESULTSand thus ykn = a � (kn0 + nk) + b= ak � (n0 + n) + b= vnwhere (vn)n�0 = eicg(p; ka; b; n0).These three observations give us the tools to show that all maximal periodEICGs can be derived from the \mother-EICG" eicg(p; 1; 0; 0) in the followingway:� Start with the sequence eicg(p; 1; 0; 0).� Shift the sequence by a(n0 + ab). The result is eicg(p; 1; 0; a(n0 + ab)).� Take every ath element of that sequence. According to Observation 3.3 weget eicg(p; a; 0; n0 + ab).� According to Observation 3.2 this sequence is the same as eicg(p; a; b; n0).Can these insights help us in the theoretical investigation on how samplesfrom an EICG behave under various tests ? Yes, they provide a very convenientand elegant formalism to describe subsequences and various kinds of s-tuplesgenerated from the stream of pseudorandom numbers. With this formalism, theproofs of discrepancy estimates and non-linear properties are very concise.First of all, we do not need to bother with the parameter n0 in the theoreticalinvestigation as we can always rewrite the EICG to one with n0 = 0.Second, any property of a sequence of EICG numbers, which is valid indepen-dently of the parameters used, is immediately valid for subsequences consistingof every k-th element. One direct consequence of this is, that once we can provethat pairs of consecutive numbers are uncorrelated for all valid parameters, wecan rule out the possibility of long-range correlations at critical distances. See[10, 19] for a discussion of such problems inherent to the LCG.The third gain, due to Niederreiter [70], is to be able to write almost arbitrarys-tuples formed out of the stream of EICG numbers as parallel streams. Suchs-tuples as usually used to examine the correlation between successive numbers.For example, the overlapping serial test (see page 21) tests the equidistributionof the vectors yn = (yn; yn+1; : : : ; yn+s�1) 2 Zsp (3.6)for n = 0; 1; : : : ; p � 1 in order to test the PRN (yi)i�0 for correlations. If wepick the �rst coordinate of each vector we get the original sequence. Pickingalways the second results in the original sequence shifted by one. According to

3.2. STRUCTURAL PROPERTIES 37the above equivalences we can write this shifted sequence as an EICG with thesame parameter a, n0 = 0, and a di�erent b. Thus we haveyn = �y(1)n ; y(2)n ; : : : ; y(s)n � 2 Zsp (3.7)where (y(i)n)n�0 is the sequence generated by the EICG eicg(p; a; a(i� 1) + b; 0).The obvious generalisation is to allow almost arbitrary EICGs eicg(p; ai; bi; 0) foreach coordinate.In the following, we will prove all statements on the behaviour of s-tuples interms of these parallel streams. For that, we will need to restrict the possiblevalues for the ai and bi in order to avoid certain special cases like a1 = a2 ^b1 = b2. As we will see later in the various proofs, we need the condition aibi 6=ajbj for all i 6= j. Thus we have the following de�nition:De�nition 3.1 (Parallel Streams) Let p be prime, 1 � s < p, and a1; : : : ; as 2Z�p, b1; : : : ; bs 2 Zp such that alb1; : : : ; asbs 2 Zp are distinct. Then we puty(i)n = ain+ bi for i = 1; 2; : : : ; s and n � 0; (3.8)and de�ne a sequence (yn)n�0 in the s-dimensional a�ne space over Zp by puttingyn = �y(1)n ; y(2)n ; : : : ; y(s)n � 2 Zsp:An interesting special case of parallel streams, which is more general than theoverlapping s-tuples considered above, can be obtained as follows. Choose aninteger m � 1 with gcd(m; p) = 1 and integers 0 � n1 < n2 < : : : < ns < p andput yn = (ymn+n1; : : : ; ymn+ns) 2 Zsp for n � 0;where the yn are as in (3.1). This sequence of points in Zsp can be written interms of parallel streams according to De�nition 3.1 by putting ai = am andbi = ani + b for 1 � i � s. It is easy to show that the aibi are distinct, thus allresults concerning parallel streams are valid for this general method of composings-tuples, too.The non-overlapping tuples yn := (ysn; ysn+1; : : : ; ysn+s�1) are covered by theconcept of parallel streams, too. To see this, set ai = sa and bi = a(i� 1) + b fori = 1; : : : ; s.3.2 Structural PropertiesThe best known structural property of any pseudorandom number generator isthe lattice structure of the LCG. Coveyou/MacPherson [9] and Marsaglia [64]

38 CHAPTER 3. THEORETICAL RESULTSnoted �rst that s-tuples formed from successive LCG-numbers form a latticein the s-dimensional cube. Figure 3.1 depicts the lattice formed by plottingoverlapping 2-tuples for the full period of two \toy" generators. \Productionquality" generators exhibit the same structure, you just have to zoom into theimage to see the pattern.
00.5
1

0 0.5 1 00.5
1

0 0.5 1Figure 3.1: Overlapping pairs from lcg(256,69,5,1) and lcg(256,53,1,1)The shape of the lattice depends very strongly on the parameters a and b ofthe LCG. Thus various measurements on the coarseness of the lattice are usedto select suitable parameters a and b. That way, a weakness of the LCG turnsinto a strength, as one can guarantee a well-behaved lattice for low dimensionsas long as the parameters are chosen well enough.Does the EICG exhibit a similar structure ? Figure 3.2 suggests that theEICG does not possess this linear property, although one can see some otherregularities. In fact, one can prove a very stringent non-linearity property fors-tuples taken from an EICG. The theorem describing this is due to Niederreiter[70].
00.5
1

0 0.5 1 00.5
1

0 0.5 1Figure 3.2: Overlapping pairs from eicg(257,6,1,0) and eicg(257,30,1,0)

3.2. STRUCTURAL PROPERTIES 39Theorem 3.1 Let yn = �y(1)n ; y(2)n ; : : : ; y(s)n � as in De�nition 3.1, then every hy-perplane in Zsp contains at most s of the points yn, n = 0; 1; : : : ; p � 1, withy(1)n � � � y(s)n 6= 0. If the hyperplane passes through the origin of Zsp, then it con-tains at most s� 1 of these points yn.Proof: All calculations in this proof are performed in the �nite �eld Zp.Furthermore, remember that according to De�nition 3.1, the aibi are distinct.A hyperplane Hc;c0 in Zsp is uniquely de�ned by a vector c = (c1; : : : ; cs) 2Zsp n f0g and a scalar c0 2 Zp as Hc;c0 = fx 2 Zsp j x � c = c0g. We restrict oursearch for points on a hyperplane n 2 W := Zp n f�a1b1; : : : ;�asbsg. Thus forn 2 W we have according to (3.8) y(1)n ; : : : ; y(s)n 6= 0, therefore we can rewrite thehyperplane equation for yn as sXj=1 cjajn + bj = c0:By clearing denominators, we see that n is a root of the polynomialh(x) = c0 sYi=1 (aix + bi)� sXj=1 cj sYi=1i6=j (aix + bi):If c0 6= 0, then h is a nonzero2 polynomial of degree s over Zp. Since such apolynomial has at most s roots in Zp, the hyperplane Hc;c0 contains at most s ofthe yn with n 2 f0; 1; : : : ; p� 1g n f�a1b1; : : : ;�asbsg.If c0 = 0, that is 0 2 Hc;c0, we geth(x) = sXj=1 cj sYi=1i6=j (aix+ bi);whose degree is at most s�1. It remains to show that h is not the zero polynomial.As c is not the zero vector, one of its coordinates is nonzero. For ck 6= 0 we haveh(�akbk) = ck sYi=1i6=k (�aiakbk + bi)= ck sYi=1i6=k ai(aibi � akbk)6= 0;because ck is the chosen nonzero coordinate, and the ai as well as the (aibi�akbk)are nonzero according to the conditions of the theorem. As we have found h(x) 6=0 for some x, h cannot be the zero polynomial.2Remember: ai 6= 0 for i = 1; : : : ; s.

40 CHAPTER 3. THEORETICAL RESULTSThis theorem proves that s-tuples taken from an EICG do not form any linearstructure such as a lattice. But that does not mean that no other kind of patternemerges in plots of pairs of consecutive3 numbers. For example, consider Figure3.3, where one can see a hyperbola-like structure in the upper left and lower rightcorner. Eichenauer-Herrmann and Wegenkittl are currently preparing a paperdiscussing these properties of the EICG.

0
0.5
1

0 0.5 1Figure 3.3: Overlapping pairs from eicg(1163,1,0,0)All the plots so far contained all the overlapping pairs available from the fullperiod of the generator. This way, the underlying structure of the generator isperfectly visible. But usually one does not utilize the full period of any generator;a common rule of thumb is to use not more than the square root of the period.Thus the LCG will never be able to build up the full lattice and the EICGwill contain only a few points on hyperbola. Figure 3.4 depicts the lattice oflcg(65536,325,1,1), the �rst image shows the full lattice in a zoomed view, thesecond one contains only 256 points, which corresponds to the square root of allpossible points.3Note that according to Observation 3.3 any step corresponds to a single step for a di�erentEICG, thus we can restrict our search for patterns to pairs of consecutive numbers.

3.3. CORRELATION ANALYSIS 41
00.050.1

0 0.05 0.1 00.5
1

0 0.5 1Figure 3.4: Overlapping pairs from lcg(65536,325,1,1)These �gures clearly demonstrate that any regularities a generator developsover the full period are not necessarily present when only a fraction of the avail-able numbers is used. The recommendation never to exhaust the full periodcan be further justi�ed by the following argument: The PRNG is supposed tosimulates drawing numbers from an urn with putting the numbers back into theurn, but in fact the typical PRNG empties the imaginary urn before it puts allnumbers back when the period is exhausted. The di�erence between \drawingwith replacement" and \drawing without replacement" is small as long as only afraction of all numbers are drawn from the urn.3.3 Correlation AnalysisThe discrepancy is a widely used and well studied measure for the equidistributionof a set of points. In this section we will try to give a motivated de�nition,some theoretical background, and summarize all published results concerning theEICG.3.3.1 BackgroundThere are at least three approaches to the notion of discrepancy, one stems fromstatistics, one from geometric reasoning, and one from numerical integration. Wewill use the latter. An extensive introduction to discrepancy can be found inNiederreiter [69, Chapter 2].We will use the following setting: The closed s-dimensional unit cube �Is =[0; 1]s will be the integration domain in which we will try to integrate the functionf by using the quasi-Monte Carlo integrationZ�Is f(u)du � 1N NXn=1 f(xn) (3.9)

42 CHAPTER 3. THEORETICAL RESULTSwith x1; : : : ;xN 2 �Is. Ideally, we hope that the approximation converges to theintegral as the number of points increases. If this is the case for a reasonableclass of functions, say, for all continuous f on �Is, then we call the (in�nite) se-quence (x1;x2; : : :) uniformly distributed in �Is. One can show that this de�nitionof \uniformly distributed" is quite independent of the class of functions; usingthe Riemann-integrable functions yields the same test as using the characteristicfunctions of a very simple set of intervals.Whereas the limit of the integration error can be used as a qualitative mea-sure for the distribution properties of an (in�nite) sequence of points, one canuse the integration error in the �nite case as a quantitative measurement of theequidistribution of the �nite sequence (xn)Nn=1.In order to get a workable measurement, we have to state which family of func-tions f we consider for the integration, and how we condense all the integration-errors for each function from the family into one single number.The general concept of discrepancy uses the set of characteristic functions ofaxis-parallel cubes in Is := [0; 1[s as the functions to integrate and the supremumas the condensing function. Formally, we can write this in the following way:If
 = (xn)Nn=1 is a �nite sequence in Is, and B an arbitrary subset of Is, thenwe can express the quasi-Monte Carlo integration of the characteristic function4cB in terms of the number of xi in B,A(B;
) := #fn 2 f1; : : : ; Ng j xn 2 Bg;as Z�Is cB(u)du � 1N NXn=1 cB(xn) = 1NA(B;
):Based on this, the error when integrating cB can be written as ���A(B;
)N � �s(B)���,where �s(B) is the s-dimensional volume5 of B. Thus we can write the generalnotion of the discrepancy of a �nite sequence
 of points in Is for an arbitrary6family B of sets as DN(B;
) = supB2B �����A(B;
)N � �s(B)����� (3.10)From this general de�nition we can derive the de�nition of the two most im-portant incarnations of discrepancy as follows:De�nition 3.2 The star discrepancy D�N(
) = D�N (x1; : : :xN) of the �nitesequence
 is de�ned by D�N(
) := DN(J �;
), where J � is the family of allsubintervals of Is of the form Qsi=1 [0; ui[.4cB(x) is de�ned as 1 for x 2 B and 0 for x =2 B.5To be exact, �s(B) denotes the s-dimensional Lebesgue-measure of B.6B should be a non-empty family of Lebesgue-measurable subsets of Is.

3.3. CORRELATION ANALYSIS 43De�nition 3.3 The (extreme) discrepancy DN(
) = DN(x1; : : :xN) of the�nite sequence
 is de�ned by DN(
) := DN(J ;
), where J is the family of allsubintervals of Is of the form Qsi=1 [ui; vi[.While DN and D�N are the classical �gures for measuring the equidistribution,they are far from being the only ones. Interesting variations of the basic ideaare the isotropic discrepancy, which uses the family of convex sets instead ofaxis-parallel cubes, or the L2-discrepancy, which uses the 2-norm instead of thesupremum. Especially the L2-discrepancy has received a lot of attention recentlyas it is suitable for empirical testing [37] and has a number of interesting theoret-ical properties [79, 61]. Another measurement worth mentioning is the weightedspectral test [39, 45, 43, 40, 46].Let us quickly state a few general results concerning discrepancy. They willhelp us to interpret the main results of this chapter. We once again refer toNiederreiter [69, p. 14�, p. 166�] for proofs and further references.Proposition 3.1 For all �nite sequences
 consisting of N points in �Is we haveD�N(
) � DN(
) � 2sD�N(
)and 0 � D�N (
) � DN(
) � 1:In dimension one, that is s = 1, it is possible to express the discrepancy as arelatively simple formula operating on the ordered list of points.Proposition 3.2 If 0 � x1 � x2 � : : : � xN � 1, thenD�N (x1; : : : ; xN) = 12N + max1�n�N ����xn � 2n� 12N ����and DN(x1; : : : ; xN) = 1N + max1�n�N � nN � xn�� min1�n�N � nN � xn� :From these formulae, as well as the well known fact that sorting is of com-plexity O(N logN), it is easy to see that one can calculate the discrepancy inthe one-dimensional case in O(N logN) + O(N) steps. Using a memory versusspeed tradeo� [33] it is possible to get the complexity down to O(N). In higherdimensions s calculating the discrepancy is of complexity O(N s), making anyreasonable empirical testing computationally infeasible. Probabilistic algorithms[88] can be employed to calculate tight upper bounds for a given
.What do we know about the behaviour of DN with increasing N ? If thesequence of point is indeed uniformly distributed in �Is, then we know that

44 CHAPTER 3. THEORETICAL RESULTSlimN!1DN = 0. For a sequence of uniformly distributed random points weknow that limN!1DN = 0 with probability one. But in order to use the discrep-ancy as a �gure of merit for �nite sequences, we need to know exactly how DNconverges for random sequences. Luckily, the following result (due to Kiefer [48])provides us with the benchmark according to which we can judge the discrepancybounds derived for PRN.Proposition 3.3 (Law of the iterated logarithm) Let z1; z2; z3; : : : be a se-quences of uniformly distributed random points in �Is, then we havelimN!1 (2N)1=2D�N(z1; : : : ; zN)(log logN)1=2 = 1 �1 � a:e:;where �1 is the Lebesgue measure on the space of all in�nite sequences in �Is.The discrepancy is per de�nition an upper bound for the quasi-Monte Carlointegration error for a very limited class of functions, namely the characteristicfunctions of axis-parallel cubes. A classic result by Hlawka uses the discrepancyto derive an error-bound for a large class of functions.Proposition 3.4 (Koksma-Hlawka inequality [69]) If f has bounded varia-tion V (f) on �Is in the sense of Hardy and Krause, then for any x1; : : : ;xN 2 Iswe have ����� 1N NXn=1 f(xN)� Z�Is f(u)du����� � V (f)D�N(x1; : : : ;xN):Why is this inequality so important ? For the Monte Carlo numerical integra-tion, which is based on \random numbers", one cannot derive an a-priori7 errorbound on the integration error. It is only possible to state a probabilistic errorbound, a shortcoming that is often not acceptable. The inequality of Koksma-Hlawka on the other hand, is a hard bound on the integration error. Thus inorder to get such a bound for the Monte Carlo method, one has to calculate thediscrepancy for the numbers used, which is not feasible in practice. The way outis to use a set of numbers for which bounds on the discrepancy are known inadvance, such as (t;m; s)-nets or PRNGs for which such bounds are available.On the other hand, if we want our PRNG to model a U [0; 1[distributed randomvariable as closely as possible, the law of the iterated logarithm provides us withthe correct order of magnitude for the discrepancy. One can argue that any resultsconcerning the discrepancy of a particular generator which shows a rate of growthclose to O(N�1=2 log logN) is a sign for the right amount of \randomness" in thegenerator. Empirical evidence seems to support this argument. In any case,the discrepancy is certainly the most widely used �gure of merit in theoreticalanalysis of pseudorandom number generation algorithms.7A-priori in the sense of \before the random numbers are actually drawn".

3.3. CORRELATION ANALYSIS 453.3.2 Auxiliary ResultsIn order to prove discrepancy bounds, we need a variety of auxiliary results.Unfortunately it is not possible to include the proofs for these lemmata withoutexceeding the scope of this thesis, as well as alienating the target audience. Thuswe will only list the results and give references to the proofs.The basic approach to derive discrepancy bounds for PRNG is due to Nieder-reiter [69], who established a link between the discrepancy of a �nite sequenceof points with rational coordinates and certain exponential sums. As most com-mon PRNG use integer arithmetic combined with a �nal scaling operation, thisapproach is perfectly suited for the study of the output of such generators.Niederreiter's proof [69, x3.2] is elementary, although rather tricky. Hellekalek[38] gave a proof based on dyadic harmonic analysis. A detailed proof can befound in Weingartner [86].In correspondence with the literature [70, 69], we will use the following de�ni-tions: For a prime p � 5 let C�s (p) be the set of all nonzero h = (h1; : : : ; hs) 2 Zswith jhij < p=2 for 1 � i � s. For such h, put r(h; p) = Qsi=1 r(hi; p) withr(h; p) = p sin(�jhj=p) for h nonzero and r(0; p) = 1. Furthermore, set �(n) =e2�p�1n=p for n 2 Zp, and let u�v denote the standard inner product of u;v 2 Rs .Although some of the Lemmata below do not need this restriction, we willconsider only the case of prime moduli here.Lemma 3.1 For a prime p � 2 and y0;y1; : : : ;yN�1 2 Zsp, let
 be the �nitesequence (xn = yn=p)N�1n=0 . ThenDN(
) � 1� (1� 1=p)s + Xh2C�s (p) 1r(h; p) �����1p N�1Xn=0 �(h � yn)����� :The following Lemma is due to Niederreiter [70, Lemma 2] which improves[69, Corollary 3.11].Lemma 3.2 Let p � 5 be a prime and let y0;y1; : : : ;yN�1 2 Zsp. Suppose thereal number B is such that�����N�1Xn=0 �(h � yn)����� � B for all h 2 C�s (p):Then the discrepancy DN of the �nite sequence (xn = yn=p)N�1n=0 satis�esDN � 1� (1� 1=p)s + BN 4�2 log p+ 1:38 + 0:64p !s :

46 CHAPTER 3. THEORETICAL RESULTSIn order to derive the bound B for the EICG we need the following two Lem-mata, the �rst one is due to Cochrane [7], the second is a variant of the Bomberi-Weil bound for exponential sums (see Moreno and Moreno [67, Theorem 2]):Lemma 3.3 For any prime p � 5 and any integer N we havep�1Xu=1 �����sin(�uN=p)sin(�u=p) ����� < 4�2 p log p+ (0:38)p+ 0:64:Lemma 3.4 Let Q=R be a rational function over Zp which is not of the formAp � A with A 2 Zp(x). Let s be the number of distinct roots of the polynomialR in Zp. Then we have�������� Xb2ZpR(n) 6=0 � Q(n)R(n)!�������� � (max(deg(Q); deg(R)) + s� � 2)p1=2 + �;where s� = s and � = 1 if deg(Q) � deg(R), and s� = s+1 and � = 0 otherwise.The Koksma-Hlawka inequality can be used to derive a lower bound on thediscrepancy of a �nite sequence of points. All that is needed is a function with aknown integral and bounded variation. In light of the previous lemmata it seemsnatural to use a function for which the Monte Carlo integration can be expressedin terms of exponential sums. The following result is due to Niederreiter [69, Cor.3.17].Lemma 3.5 For a prime p � 2 and y0;y1; : : : ;yN�1 2 Zsp, let
 be the �nitesequence (xn = yn=p)N�1n=0 . Then, for any nonzero h 2 Zs, we have����� 1N N�1Xn=0 �(h � yn)����� � 2� ((� + 1)m � 1)r(h)DN(
);where m is the number of nonzero coordinates of h.Unfortunately, we cannot prove a lower bound on the generic sum P�(h �yn)for �nite sequences of points generated by an EICG. But we are able to provesuch bounds for a slightly di�erent exponential sum EN (�;d; e), which we canlink to sequences generated by an EICG, and which is a special case of the sum inLemma 3.5. This approach is due to Eichenauer-Herrmann and Niederreiter [22].All lemmata and theorems concerning lower bounds are taken from this paper.For d = (d1; : : : ; ds) 2 Zsp and e = (e1; : : : ; es) 2 Zsp we de�neEN(�;d; e) := N�1Xn=0 �0@ sXj=1 djn+ ej1A for 1 � N � p; (3.11)and put E(�;d; e) := Ep(�;d; e).

3.3. CORRELATION ANALYSIS 47Lemma 3.6 If d 6= 0 and e1; : : : ; es distinct, thenjE(�;d; e)j � (2s� 2)p1=2 + s+ 1andjEN(�;d; e)j � 2sp1=2 4�2 log p+ 0:38 + 0:64p !+ Np �(2s� 2)p1=2 + 1�+ s:See [22] (Theorem 1 and Corollary 1) for the proofs, which are similar to the proofsof Theorems 3.2 and 3.3. Besides these upper bounds, we know the average valueof the EN (�;d; e), according to the next Lemma.Lemma 3.7 Let 1 � N � p and 1 � k � s, e;d 2 Zsp with �xed dk+1; : : : ; ds.Then we have Xd1;:::;dk2Zp jEN(�;d; e)j2 = Np2:Proof: We set dj;m;n := dj(n + ej �m + ej). With e = (e1; : : : ; es) we getXd1;:::;dk2Zp jEN (�;d; e)j2 == Xd1;:::;dk2Zp ������N�1Xn=0 �0@ sXj=1 djn+ ej1A������2= Xd1;:::;dk2Zp N�1Xn;m=0�0@ sXj=1 dj;m;n1A= N�1Xn;m=0 Xd1;:::;dk2Zp�0@ sXj=1 dj;m;n1A= N�1Xn;m=0 Xd1;:::;dk2Zp sYj=1�(dj;m;n)= N�1Xn;m=00@ sYj=k+1�(dj;m;n)1A Xd1;:::;dk2Zp kYj=1�(dj;m;n)= N�1Xn;m=0�0@ sXj=k+1�(dj;m;n)1A Xd1;:::;dk�12Zp Xdk2Zp kYj=1�(dj;m;n)= N�1Xn;m=0�0@ sXj=k+1�(dj;m;n)1A Xd1;:::;dk�12Zp k�1Yj=1 �(dj;m;n)Xd2Zp�(d(n+ ek �m+ ek))...

48 CHAPTER 3. THEORETICAL RESULTS= N�1Xn;m=0�0@ sXj=k+1�(dj;m;n)1A kYj=10@Xd2Zp�(d(n+ ej �m + ej))1A= N�1Xn;m=0n=m �(0) kYj=10@Xd2Zp�(0)1A= Npk;because we have Pd2Zp �(d � k) = 0 for k 2 Zp; k 6= 0 and p otherwise.Applying Lemma 3.5 on a �nite sequence of points generated by parallelstreams of EICG according to De�nition 3.1, and h = (1; 1; 0; : : : ; 0) 2 Zs weget for s � 2D(s)N (x1; : : : ;xN) � 12(� + 2)N �����N�1Xn=0 �(y(1)n + y(2)n)�����= 12(� + 2)N �����N�1Xn=0 �(a1n+ b1 + a2n+ b2)�����= 12(� + 2)N jEN(�;d; e)j (3.12)with d = (a1; a2) 2 Z2p and e = (b1a1; b2a2) 2 Z2p. Similarly, for h = (1; 0; : : : ; 0) 2Zs and s � 1 we haveD(s)N (x1; : : : ;xN) � 12N jEN(�; a1; b1a1)j: (3.13)3.3.3 BoundsWe now have the tools necessary to derive upper and lower bounds on the discrep-ancy of �nite sequences of points generated by parallel streams of EICG numbers.But as a reference, let us �rst look at the result available for the LCG, which willonce again serve as a reference.According to [69, Theorem 7.4] we have for the multiplicative linear congru-ential generator the following statement: For s � 2 and for an average multipliera, the discrepancy of the �nite sequence of s-dimensional points consisting of allM � 1 overlapping tuples from lcg(M; a; 0; 1) obeysD(s) = O �M�1(logM)s log log(M + 1)� ;where the implied constant depends only on s.Upper BoundsWe �rst turn our attention to upper bounds; we will prove both bounds for thefull, as well as or parts of the period. These bounds are relevant in two ways:

3.3. CORRELATION ANALYSIS 491. A small discrepancy in the s-dimensional case guarantees the uncorrelat-edness of these s-tuples. Basically, the EICG passes a generalized serialtest, as the parallel streams encompass more than just tuples formed fromconsecutive numbers.2. For s-dimensional quasi-Monte Carlo integration, a bound on the discrep-ancy equates to a bound on the integration error.Please note that the following theorems do not depend on the choice of anyparameters; they are valid for every single full period EICG. This is in sharpcontrast to the bounds known for the LCG, which is only deals with the averageover all multipliers, and thus tells us nothing about a particular generator. Fur-thermore, in the case of the LCG no bounds are known for parts of the period indimensions s � 2.As one can guess from the lemmata listed above, the proofs involve exponentialsums which need to be rearranged in a way to be able to use Lemma 3.4.The following two theorems are due to Niederreiter [70].Theorem 3.2 For p � 5, prime, and 2 � s < p set xn = yn=p based on the ynof De�nition 3.1. Then we have for the discrepancy of the �nite sequence (xn)p�1n=0the following upper bound:D(s)p � 1� (1� 1=p)s + 2s� 2p1=2 + s+ 1p ! 4�2 log p+ 1:38 + 0:64p !sProof: For h = (h1; : : : ; hs) 2 C�s (p) putS(h) = Xn2Zp�(h � yn) = Xn2Zp� sXi=1 hiy(i)n ! :We now restrict the sum to those terms where y(i)n 6= 0 by using the same setW as in the proof of Theorem 3.1 as the summation domain. By noting thatcard(Zp nW) = s and using the triangle inequation we getjS(h)j � s+ ����� Xn2W � sXi=1 hiain+ bi!����� = s+ �������� Xn2ZpR(n) 6=0 � Q(n)R(n)!�������� ;where Q=R is the rational function over Zp given byQ(x)R(x) = sXi=1 hiaix + bi with R(x) = sYi=1(aix + bi): (3.14)

50 CHAPTER 3. THEORETICAL RESULTSAs all ai are nonzero, we have deg(R) = s < p. Furthermore, as at least one ofthe hi is nonzero, the uniqueness of the partial fraction decomposition for rationalfunctions implies that Q 6= 0 and deg(Q) < s = deg(R). In order to apply Lemma3.4, we have to show that Q=R is not of the form Ap�A with A 2 Zp(x), whereZp denotes the algebraic closure of the �eld Zp, and Zp(x) denotes the �eld ofrational functions over Zp. If this were the case, we would haveQR = �KL �p � KLwith polynomials K;L over Zp and gcd(K;L) = 1, and thusLpQ = (Kp�1 � Lp�1)KR: (3.15)Since we have demanded gcd(K;L) = 1, L cannot divide K or (Kp�1 � Lp�1),thus Lp must divide R. As deg(R) = s < p, that can only be the case if L is anonzero constant polynomial which implies deg(Lp) = 1. Comparing the degreesin (3.15) yields deg(Q) � deg(R), which contradicts the degrees derived from(3.14). Thus we can apply Lemma 3.4, and this leads toS(h) � (2s� 2)p1=2 + s+ 1 for all h 2 C�s (p): (3.16)The rest follows from Lemma 3.2.Theorem 3.3 For p � 5, prime, and 2 � s < p let the �nite sequence (xn =yn=p)p�1n=0 be like in Theorem 3.2. Then we have for the discrepancy of the �rstN points the following upper bound:D(s)N < 1� (1� 1=p)s+ 2s� 2p1=2 + s+ 1p + sN (2p1=2 + 1) 4�2 log p+ 0:38 + 0:64p !! �� 4�2 log p + 1:38 + 0:64p !sProof: Just as in the proof of Theorem 3.2 we need to derive a bound foran exponential sum to be able to apply Lemma 3.2. This time the summationdomain is not Zp, thus we need to rewrite the sum in a rather tricky way.For h = (h1; : : : ; hs) 2 C�s (p) putSN(h) = N�1Xn=0 �(h � yn) = N�1Xn=0 �(rn)

3.3. CORRELATION ANALYSIS 51with rn = Psi=1 hiy(i)n for n � 0. We can now rewrite SN(h) using the fact thatPu2Zp �(uk) evaluates to 0 for k 6= 0 and to p otherwise.SN(h) = N�1Xn=0 �(rn)= p�1Xn=0�(rn)1f0;:::;N�1g(n)= p�1Xn=0�(rn) N�1Xt=0 �t;n= p�1Xn=0�(rn) N�1Xt=0 1p p�1Xu=0�(u(n� t))= 1p p�1Xu=0N�1Xt=0 p�1Xn=0�(rn)�(�ut)�(un)= 1p p�1Xu=0 N�1Xt=0 �(�ut)!0@Xn2Zp�(rn + un)1A= Np S(h) + 1p p�1Xu=1 N�1Xt=0 �(�ut)!0@Xn2Zp�(rn + un)1AIn the last line the summand for u = 0 was pulled out; the term S(h) is the sameas in the proof of Theorem 3.2. As we need an upper bound on jSN(h)j, we applythe triangle inequation, yieldingjSN(h)j � Np jS(h)j+ 1p p�1Xu=1 �����N�1Xt=0 �(�ut)����� ������ Xn2Zp�(rn + un)������ ; (3.17)and examine each of the terms on the right side.We want to apply Lemma 3.4 on the rightmost term: For 1 � u � p � 1 wehave, by the same argument as following (3.14)������ Xn2Zp�(rn + un)������ � s+ �������� Xn2ZpR(n) 6=0 � Q(n)R(n)!�������� ;where Q=R is the rational function over Zp given byQ(x)R(x) = sXi=1 hiaix+ bi + ux with R(x) = sYi=1(aix+ bi):Once again, we claim that Q=R is not of the form Ap�A with a rational functionA 2 Zp(x). From the de�nition of R and Q we have deg(R) = s and deg(Q) =

52 CHAPTER 3. THEORETICAL RESULTSs+ 1, as all the neither the ai nor u can be zero. For if we hadQR = �KL �p � KLwith polynomials K;L over Zp and gcd(K;L) = 1, then the argument following(3.15) shows that L is a nonzero constant polynomial. Thus we haveQ = (e1Kp + e2K)Rfor suitable e1; e2 2 Zp with e1; e2 6= 0. Comparing the degrees of the polynomialsin this equation we get deg(e1Kp + e2K) = 1, which implies deg(K) � 1, hencedeg(e1Kp + e2K) = p deg(K) > 1. This contradiction proves that we can applyLemma 3.4, yielding������ Xn2Zp�(rn + un)������ � s(2p1=2 + 1) for 1 � u � p� 1: (3.18)Furthermore, by rewriting the sum over t using some elementary equivalences like�(x)� 1 = e2�p�1x� 1 = e�p�1x � (e�p�1x� e��p�1x) = e�p�1x � 2p�1 sin�x, weget �����N�1Xt=0 �(�ut)����� = �����N�1Xt=0 e2�p�1ut=p�����= �����N�1Xt=0 �e2�p�1u=p�t�����= �����e2�p�1uN=p � 1e2�p�1u=p � 1 �����= �����e�p�1uN=p 2p�1e�p�1u=p 2p�1 ����� � �����sin(�uN=p)sin(�u=p) �����= �����sin(�uN=p)sin(�u=p) ����� : (3.19)We now return to (3.17) to put the pieces together. Combining everything withan application of Lemma 3.3 we getjSN(h)j �(3:17)� Np jS(h)j+ 1p p�1Xu=1 �����N�1Xt=0 �(�ut)����� ������ Xn2Zp�(rn + un)������(3:18)� Np jS(h)j+ s(2p1=2 + 1)1p p�1Xu=1 �����N�1Xt=0 �(�ut)�����

3.3. CORRELATION ANALYSIS 53(3:19)= Np jS(h)j+ s(2p1=2 + 1)1p p�1Xu=1 �����sin(�uN=p)sin(�u=p) �����L: 3:3< Np jS(h)j+ s(2p1=2 + 1)� 4�2 p log p+ (0:38)p+ 0:64�(3:16)� Np �(2s� 2)p1=2 + s+ 1�+ s(2p1=2 + 1)� 4�2 p log p+ (0:38)p+ 0:64� :for all h 2 C�s (p), and thus we can apply Lemma 3.2 to obtain the desired upperbound on D(s)N .Lower BoundsThe theorems covering lower bounds are formulated in a di�erent way. Insteadof giving hard bounds for all EICG, these theorems state how many EICGs theremust be exceeding a threshold value for the discrepancy. This kind of statementfollows from the basic approach to the problem, namely combining upper boundson exponential sums with their average values.Lower bounds guarantee that the PRN are not perfectly equidistributed, theycontain the irregularities found in \random" numbers, too.The following three theorems are due to Eichenauer-Herrmann and Nieder-reiter [22].Theorem 3.4 Let a2 2 Z�p,b2 2 Zp, and c 2 Zp n fb2a2g be �xed. Let 0 < t �qp=(p� 1), and set Ap(t) := p2 � (p� 1)p t2(2p1=2 + 3)2 � p t2 :Then there exist more than Ap(t) values of a1 2 Z�p such that for s-tuples fromthe corresponding parallel stream of EICG numbers with b1 = a1c and s � 2 wehave D(s)p � t2(� + 2) p�1=2:Proof: We rewrite the theorem in terms of EN by using (3.12). Thus we haved = (d1; d2) = (a1; a2), and e = (e1; e2) = (b1a1; b2a2) 2 Z2p with e1 6= e2, andwe need to show that there are more than Ap(t) values for d1 2 Z�p such thatjE(�;d; e)j � tp1=2.Now suppose there exist at most Ap(t) values of d1 2 Z�p with jE(�;d; e)j �tp1=2, i.e., there exist at least (p�1)�Ap(t) values of d1 with jE(�;d; e)j < tp1=2.From Lemma 3.6 (with s = 2) we know that jE(�;d; e)j � 2p1=2 + 3 for every

54 CHAPTER 3. THEORETICAL RESULTSd1 2 Z�p. Hence, observing that d1 = 0 contributes nothing to the sum, we obtainXd12Zp jE(�;d; e)j2 = Xd12Z�p jE(�;d; e)j2 < (p�1�Ap(t))t2p+Ap(t)(qp1=2+3)2 = p2;which contradicts Lemma 3.7 (with s = 2, k = 1, and N = p).Theorem 3.5 Let a2 2 Z�p,b2 2 Zp, c 2 Zp n fb2a2g and an integer N with1p 2p1=2 4�2 log p + 0:38 + 0:64p !+ 2!2 < N < pbe �xed and set�N := pp� 1 � 1N(p� 1) 2p1=2 4�2 log p+ 0:38 + 0:64p !+ 2!2AN(t) := N(p� 1)(�N � t2)�4p1=2 � 4�2 log p+ 0:38 + 0:64p �+ Np (2p1=2 + 1) + 2�2 �Nt2for 0 < t � p�N . Then there exist more than AN (t) values of a1 2 Z�p suchthat for s-tuples from the corresponding parallel stream of EICG numbers withb1 = a1c and s � 2 we have D(s)N � t2(� + 2) N�1=2:Proof: The proof is analogous to the last one. The only real di�erence is thehandling of d1 = 0, where we need to apply Lemma 3.6 with s = 1.Using (3.13) instead of (3.12) we get a slightly di�erent result. As the proofcontains no new ideas, we omit it, too.Theorem 3.6 Let c 2 Zp and 1 � N < p be �xed. For real numbers t ful�lling0 < t � q(p�N)=(p� 1) setBN (t) := N(p�N)�N(p� 1)t2�2p1=2 � 4�2 log p+ 0:38 + 0:64p �+ Np + 1�2 �Nt2 :Then there exist more than BN(t) values of a1 2 Z�p such that for s-tuples fromthe corresponding parallel stream of EICG numbers with b1 = a1c and s � 2 wehave D(s)N � t2 N�1=2:Restricting oneself to the ordinary serial test, i.e. is considering only overlap-ping s-tuples instead of vectors from parallel streams, it is possible to improveTheorem 3.6. See [22, Corr. 9] for details.

3.4. OTHER RESULTS 553.4 Other ResultsFor congruential generators modulo a prime p, the following de�nition, due toNiederreiter [69], speci�es another criteria which can be used to classify PRNGs.De�nition 3.4 For given s � 1, a congruential generator producing the sequencey0; y1; : : : 2 Zp passes the s-dimensional lattice test if the vectors yn � y0; n =1; 2; : : :, span the s-dimensional vector space Zsp, whereyn = (yn; yn+1; : : : ; yn+s�1) 2 Zsp for n = 0; 1; : : : :Theorem 3.7 An EICG with modulus p passes the s-dimensional lattice testexactly for all s � p� 2. This is the optimal behaviour under this test.Proof: As explained in 1.3.4, one can visualize any congruential generatormodulo p with period length p as a permutation polynomial mapping n to yn. Inthe case of the EICG, this polynomial has degree d = p� 2 as we can write thethe EICG formula as yn := an+ b = (an + b)p�2according to the theorem of Euler-Fermat. The rest follows immediately froma theorem by Eichenauer, Grothe, and Lehn [13], which can also be found inNiederreiter [69, Theorem 8.2].

Chapter 4Empirical TestsAs explained is section 2.3.2, testing a pseudorandom number generator is a trickytask. Even if one decides which properties one wants to test for, designing thetest itself involves a fair amount of statistic knowledge as to how the test shouldbe parameterized as well as how the results should be judged.In this chapter, we will try to give a survey of empirical tests concerning theEICG carried out by various authors. Since it will be inappropriate to spend toomuch time on discussing all design decisions in detail, we will only describe themotivation, the test procedure, and the results. For more information we referto the original authors.Another compilation of empirical test results concerning inversive generatorscan be found in [20].4.1 Digit TestThe Digit Test, due to Leeb1 [57, 25, 60], tries to assess the distribution qualityof a PRNG by looking at the g-adic representation of its output. If we only allowg = 2l, one digit in base g corresponds to l binary digits, which we can obtainby cutting out l consecutive bits in the computer representation of the numbers.This is a very e�cient procedure which can be done by simple bitwise AND andshift operations. Let's visualize this by an example, using 8 = 23 as the baseand selecting the second digit which is corresponds to the three bits starting at1The author wants to thank Hannes Leeb for his help in writing this section, was well as forthe Postscript graphics reprinted here.
56

4.1. DIGIT TEST 57position k = 4. Decimal Binary Base 8 selected digit0.5859375 0.100 101 10 0.454 50.82421875 0.110 100 11 0.646 40.21484375 0.001 101 11 0.156 50.765625 0.110 001 00 0.610 10.16015625 0.001 010 01 0.122 20.48046875 0.011 110 11 0.366 6Ideally, we expect the last column to be uniformly distributed over all possibledigits. Furthermore, we can assume that if the original numbers are uncorrelated,this will hold for the sequence of digits, too. On the other hand, if we can provethat something is wrong with the digit sequence, this does not shed a good lighton the original numbers.What have we gained by mapping numbers to digits ? Basically this mappingplays the role of the \bins" discussed on page 20 and 28. As discussed there,this mapping is used to make the problem manageable by drastically reducingthe number of possible values for each number. Now we can easily count theoccurrences of each di�erent digit and perform correlation tests on them.As a correlation test Leeb used the idea of the serial test (see p. 21) withnon-overlapping s-tuples. To measure the distribution of the s-tuples, a �2 testwas used; the resulting �2-value was called t1(s; k; l), the level-1 test statistic.This procedure was repeated 64 times, and all the �2 values were compared totheir expected distribution by a two-sided Kolmogorov-Smirnov test, yieldingt2(s; k; l), the level-2 test statistic on which we will focus in the graphics.Let's summarize all the parameters which must be speci�ed to turn the ab-stract idea of the Digit Test into a computer program.� First of all, we have to specify the generator we want to test. Leeb usedboth a selection of popular linear congruential generators as well as inversivegenerators. In Table 4.2 the LCG are sorted according to their performancein the spectral test [9]; the smaller the value for 1=�3 the better is the latticestructure of the generator in dimension 3.� Next, the number of bits to cut out is selected. This block-length l de-termines the base (2l) of the digits to test. In his calculations, Leeb usedl 2 f1; 2; : : : ; 10g.� Now that we know how many bits we want from each number, the nextstep is to determine which bits to cut out. Leeb termed this parameter theblock-start k, which he chose from the set f1; 2; : : : ; 21g.

58 CHAPTER 4. EMPIRICAL TESTS� We are now able to generate a sequence of digits (or bit-blocks) accordingto the parameters speci�ed so far. The next step is to combine consecu-tive digits to vectors by forming non-overlapping s-tuples. Leeb chose touse dimensions s up to 10. As the dimension increases, the number of binsneeded for the counting process grows exponentially; thus Leeb had to re-strict the range of the block-length l with increasing s in order to keep thecomputation feasible.� Next we need to determine how many s-tuples we should generate. Thecommon rule of thumb for �2 tests is to make sure that the each of the 2 slbins can expect at least 5 hits. As we expect equidistribution amongst thebins, we get a lower bound on how many tuples we should generate. Leebdecided to generate 6 �2 sl tuples, which were in turn generated using s �6 �2 slnumbers from the PRNG.� We have now �nished the �rst level (t1) of the Digit Test. For the secondlevel (t2), we need to repeat the above procedure with a distinct sample ofPRN to be able to use the KS test. Leeb chose to use 64 repetitions whichguarantees that the KS approximation is valid.It should be clear by now that the hierarchical design of the complete testingprocedure results in huge resource requirements both computationally as well asmemory-wise to actually run the test. See Table 4.1 for the actual parametersused, and Table 4.2 for the generators tested. The computations were carried outusing the pLab [56] PRNG testing framework, which is based on the author'sgenerator library. digit test parametersdimension s block-start k block-length l1 1; 5; 9; : : : ; 21 1; 2; : : : ; 102 1; 5; 9; : : : ; 21 1; 2; : : : ; 103 1; 5; 9; : : : ; 21 1; 2; : : : ; 74 1; 5; 9; : : : ; 21 1; 2; : : : ; 55 1; 5; 9; : : : ; 21 1; 2; : : : ; 46 1; 5; 9; : : : ; 21 1; 2; 3(7) (1); (5); (9); : : : ; (21) (1); (2); (3)(8) (1); (5); (9); : : : ; (21) (1); (2)1; 2; : : : ; 10; (11) 1; 5; 9; : : : ; 29 2Table 4.1: Digit test parameters (parentheses indicate that only t1 was computed)

4.1. DIGIT TEST 59generatorsnickname generator period 1=�3RANDU LCG(231; 65539; 0; 1) 229 0:0920575ANSI LCG(231; 1103515245; 12345; 12345) 231 0:00132673MINSTD LCG(231 � 1; 16807; 0; 1) 231 � 2 0:00156518FISH LCG(231 � 1; 950706376; 0; 1) 231 � 2 0:000768506EICG1 EICG(231 � 1; 1; 0; 0) 231 � 1ICG ICG(231 � 1; 1; 1; 0) 231 � 1Table 4.2: Generators used in the Digit testFor the graphics, the t1 value was transformed according to the expected�2 distribution to yield a value which should be asymptotically equidistributed.Thus all points in the graphics on the left hand side should vary freely between0 and 1. Values close to 0 signify a distribution of the s-tuples which is much towell-balanced, whereas values close to 1 indicate gross irregularities. The righthand graphics depict the KS-statistic t2, for which the critical region at the 1%level of signi�cance is [1:63;1). Any generator which features high values there(especially when reaching the cut-o� point 2 in the graphics) fails in the test.As Leeb in [57], we present here only a selection of the results, namely thosefor dimension s = 3. For each generator, the values of k and l were varied.Interpretation: The digit test seems to be sensible to intrinsic properties ofthe LCG, as even the best one (FISH) fails the test for certain parameters. Leebconjectures in [57] that the digit test is sensible on grid structures or long-rangecorrelation as these are two features which are present in all LCG but are provento be absent in inversive generators. Especially the lattice quality parameter1=�s seems to correlate with the digit test results. The better the lattice is (smallvalues for 1=�s), the higher the values for l and k must be to uncover de�cienciesin the generator.

60 CHAPTER 4. EMPIRICAL TESTS

1

5

9

13

17

21

block-start k

1

2

3

4
5

6
7

block-length l

0

0.2

0.4

0.6

0.8

1

t1(3,k,l)

1

5

9

13

17

21

block-start k

0

0.2

0.4

0.6

0.8

1

1

5

9

13

17

21

block-start k

1

2

3

4
5

6
7

block-length l

0

0.5

1

1.5

2

t2(3,k,l)

1

5

9

13

17

21

block-start k

0

0.5

1

1.5

2

Figure 4.1: t1 and t2 for RANDU in dimension 3

1

5

9

13

17

21

block-start k

1

2

3

4
5

6
7

block-length l

0

0.2

0.4

0.6

0.8

1

t1(3,k,l)

1

5

9

13

17

21

block-start k

0

0.2

0.4

0.6

0.8

1

1

5

9

13

17

21

block-start k

1

2

3

4
5

6
7

block-length l

0

0.5

1

1.5

2

t2(3,k,l)

1

5

9

13

17

21

block-start k

0

0.5

1

1.5

2

Figure 4.2: t1 and t2 for ANSI in dimension 3

1

5

9

13

17

21

block-start k

1

2

3

4
5

6
7

block-length l

0

0.2

0.4

0.6

0.8

1

t1(3,k,l)

1

5

9

13

17

21

block-start k

0

0.2

0.4

0.6

0.8

1

1

5

9

13

17

21

block-start k

1

2

3

4
5

6
7

block-length l

0

0.5

1

1.5

2

t2(3,k,l)

1

5

9

13

17

21

block-start k

0

0.5

1

1.5

2

Figure 4.3: t1 and t2 for MINSTD in dimension 3

4.1. DIGIT TEST 61

1

5

9

13

17

21

block-start k

1

2

3

4
5

6
7

block-length l

0

0.2

0.4

0.6

0.8

1

t1(3,k,l)

1

5

9

13

17

21

block-start k

0

0.2

0.4

0.6

0.8

1

1

5

9

13

17

21

block-start k

1

2

3

4
5

6
7

block-length l

0

0.5

1

1.5

2

t2(3,k,l)

1

5

9

13

17

21

block-start k

0

0.5

1

1.5

2

Figure 4.4: t1 and t2 for FISH in dimension 3

1

5

9

13

17

21

block-start k

1

2

3

4
5

6
7

block-length l

0

0.2

0.4

0.6

0.8

1

t1(3,k,l)

1

5

9

13

17

21

block-start k

0

0.2

0.4

0.6

0.8

1

1

5

9

13

17

21

block-start k

1

2

3

4
5

6
7

block-length l

0

0.5

1

1.5

2

t2(3,k,l)

1

5

9

13

17

21

block-start k

0

0.5

1

1.5

2

Figure 4.5: t1 and t2 for EICG1 in dimension 3

1

5

9

13

17

21

block-start k

1

2

3

4
5

6
7

block-length l

0

0.2

0.4

0.6

0.8

1

t1(3,k,l)

1

5

9

13

17

21

block-start k

0

0.2

0.4

0.6

0.8

1

1

5

9

13

17

21

block-start k

1

2

3

4
5

6
7

block-length l

0

0.5

1

1.5

2

t2(3,k,l)

1

5

9

13

17

21

block-start k

0

0.5

1

1.5

2

Figure 4.6: t1 and t2 for ICG in dimension 3

62 CHAPTER 4. EMPIRICAL TESTS4.2 Overlapping Serial TestThe overlapping serial test, �rst proposed by Marsaglia [65] as the \M-tupletest", is in its basic setup quite similar to the digit test described above. Themain di�erence is to use overlapping tuples. This modi�cation is rather small inthe implementation, but requires some statistical work to calculate the expecteddistribution as the tuples are no longer independent.We will describe here the empirical tests done by Wegenkittl [84, 85, 60]. Asthe testing procedure was very similar to the digit test setup, we will only listthe di�erences here. Whereas Leeb in the digit test used only one way to extractbits from the stream of pseudorandom numbers, Wegenkittl used two:� Digit(Start, Length) is the same method as used in the digit test, namelycutting out Length bits starting at position Start from each number.� BitStream(Number, Length) extracts more than one set of Length bits fromeach number, thus reducing the number of PRN needed to generate thetuples. This is achieved by cutting out Number times Length bits startingfrom the �rst bit. Furthermore, this method makes it feasible to test thenumbers for correlations between the high-order and low-order bits.This time these blocks of bits were used to generate variable number of tuples.Whereas in the digit test the sample sizeM was always tuned to the subsequent �2test, Wegenkittl generated up to M = 226 tuples. From these tuples, a modi�ed�2 statistic t(o)1 was computed, resulting in the test-statistic �o. Whereas the\normal �2 test statistic" does not converge to a �2 distribution for overlappingtuples due to the correlations, this modi�ed one does (see [84, p. 57] for details).This procedure was repeated 32 times and the resulting empirical distribution ofthe �o values was compared to the theoretical one using a KS test.The following graphics2 depict the results for all the generators used in thedigit test, as well as for EICG7 which stands for eicg(231 � 1; 7; 0).The left hand diagrams show the values for each of the 32 calculated t(o)1 teststatistics as the lightness of each small rectangle. A white square signi�es a lowvalue for t(o)1 , meaning perfect equidistribution of the tuples, whereas a black onesigni�es extreme deviations. The transformation t(o)1 7! lightness was chosen insuch way that each gray-scale level should be equally likely. Unfortunately, thesediagrams are not available for all parameters.In the right hand diagrams these 32 values were distilled into one single KSvalue representing the quality of their distribution. The critical region at the 1%level of signi�cance is in this case [1:58;1).2We like to thank Stefan Wegenkittl for providing the Postscript graphics, as well as for hishelpful comments on this section.

4.2. OVERLAPPING SERIAL TEST 63
18 19 20 21 22 23 24 25 26

Log_2(M)

EICG1

EICG7

ICG

FISH

MINSTD

ANSIC

RANDU

EICG1

EICG7

ICG

FISH

MINSTD

ANSIC

RANDU

18
19

20
21

22
23

24
25

26

Log_2(M)

0

0.5

1

1.5

2

ks

EICG1

EICG7

ICG

FISH

MINSTD

ANSIC

RANDU

0

0.5

1

1.5

2

Figure 4.7: Dimension 2: Digit(1,4)

18 19 20 21 22 23 24 25 26

Log_2(M)

EICG1

EICG7

ICG

FISH

MINSTD

ANSIC

RANDU

EICG1

EICG7

ICG

FISH

MINSTD

ANSIC

RANDU

18
19

20
21

22
23

24
25

26

Log_2(M)

0

0.5

1

1.5

2

ks

EICG1

EICG7

ICG

FISH

MINSTD

ANSIC

RANDU

0

0.5

1

1.5

2

Figure 4.8: Dimension 3: Digit(1,4)

18 19 20 21 22 23 24 25 26

Log_2(M)

EICG1

EICG7

ICG

FISH

MINSTD

ANSIC

RANDU

EICG1

EICG7

ICG

FISH

MINSTD

ANSIC

RANDU

18
19

20
21

22
23

24
25

26

Log_2(M)

0

0.5

1

1.5

2

ks

EICG1

EICG7

ICG

FISH

MINSTD

ANSIC

RANDU

0

0.5

1

1.5

2

Figure 4.9: Dimension 4: Digit(1,4)

64 CHAPTER 4. EMPIRICAL TESTS
18 19 20 21 22 23 24 25 26

Log_2(M)

EICG1

EICG7

ICG

FISH

MINSTD

ANSIC

RANDU

EICG1

EICG7

ICG

FISH

MINSTD

ANSIC

RANDU

18
19

20
21

22
23

24
25

26

Log_2(M)

0

0.5

1

1.5

2

ks

EICG1

EICG7

ICG

FISH

MINSTD

ANSIC

RANDU

0

0.5

1

1.5

2

Figure 4.10: Dimension 5: Digit(1,4)

EICG1

EICG7

ICG

FISH

MINSTD

ANSIC

RANDU

18
19

20
21

22
23

24
25

26

Log_2(M)

0

0.5

1

1.5

2

ks

EICG1

EICG7

ICG

FISH

MINSTD

ANSIC

RANDU

0

0.5

1

1.5

2

EICG1

EICG7

ICG

FISH

MINSTD

ANSIC

RANDU

18
19

20
21

22
23

24
25

26

Log_2(M)

0

0.5

1

1.5

2

ks

EICG1

EICG7

ICG

FISH

MINSTD

ANSIC

RANDU

0

0.5

1

1.5

2

Figure 4.11: BitStream(4,4): Dimensions 2 and 3

EICG1

EICG7

ICG

FISH

MINSTD

ANSIC

RANDU

18
19

20
21

22
23

24
25

26

Log_2(M)

0

0.5

1

1.5

2

ks

EICG1

EICG7

ICG

FISH

MINSTD

ANSIC

RANDU

0

0.5

1

1.5

2

EICG1

EICG7

ICG

FISH

MINSTD

ANSIC

RANDU

18
19

20
21

22
23

24
25

26

Log_2(M)

0

0.5

1

1.5

2

ks

EICG1

EICG7

ICG

FISH

MINSTD

ANSIC

RANDU

0

0.5

1

1.5

2

Figure 4.12: BitStream(4,4): Dimensions 4 and 5

4.2. OVERLAPPING SERIAL TEST 65
18 19 20 21 22 23 24 25 26

Log_2(M)

EICG1

EICG7

ICG

FISH

MINSTD

ANSIC

RANDU

EICG1

EICG7

ICG

FISH

MINSTD

ANSIC

RANDU

18
19

20
21

22
23

24
25

26

Log_2(M)

0

0.5

1

1.5

2

ks

EICG1

EICG7

ICG

FISH

MINSTD

ANSIC

RANDU

0

0.5

1

1.5

2

Figure 4.13: Dimension 2: BitStream(6,4)

18 19 20 21 22 23 24 25 26

Log_2(M)

EICG1

EICG7

ICG

FISH

MINSTD

ANSIC

RANDU

EICG1

EICG7

ICG

FISH

MINSTD

ANSIC

RANDU

18
19

20
21

22
23

24
25

26

Log_2(M)

0

0.5

1

1.5

2

ks

EICG1

EICG7

ICG

FISH

MINSTD

ANSIC

RANDU

0

0.5

1

1.5

2

Figure 4.14: Dimension 3: BitStream(6,4)

18 19 20 21 22 23 24 25 26

Log_2(M)

EICG1

EICG7

ICG

FISH

MINSTD

ANSIC

RANDU

EICG1

EICG7

ICG

FISH

MINSTD

ANSIC

RANDU

18
19

20
21

22
23

24
25

26

Log_2(M)

0

0.5

1

1.5

2

ks

EICG1

EICG7

ICG

FISH

MINSTD

ANSIC

RANDU

0

0.5

1

1.5

2

Figure 4.15: Dimension 4: BitStream(6,4)

66 CHAPTER 4. EMPIRICAL TESTS
18 19 20 21 22 23 24 25 26

Log_2(M)

EICG1

EICG7

ICG

FISH

MINSTD

ANSIC

RANDU

EICG1

EICG7

ICG

FISH

MINSTD

ANSIC

RANDU

18
19

20
21

22
23

24
25

26

Log_2(M)

0

0.5

1

1.5

2

ks

EICG1

EICG7

ICG

FISH

MINSTD

ANSIC

RANDU

0

0.5

1

1.5

2

Figure 4.16: Dimension 5: BitStream(6,4)

EICG1

EICG7

ICG

FISH

MINSTD

ANSIC

RANDU

18
19

20
21

22
23

24
25

26

Log_2(M)

0

0.5

1

1.5

2

ks

EICG1

EICG7

ICG

FISH

MINSTD

ANSIC

RANDU

0

0.5

1

1.5

2

EICG1

EICG7

ICG

FISH

MINSTD

ANSIC

RANDU

18
19

20
21

22
23

24
25

26

Log_2(M)

0

0.5

1

1.5

2

ks

EICG1

EICG7

ICG

FISH

MINSTD

ANSIC

RANDU

0

0.5

1

1.5

2

Figure 4.17: BitStream(8,4): Dimensions 2 and 3

EICG1

EICG7

ICG

FISH

MINSTD

ANSIC

RANDU

18
19

20
21

22
23

24
25

26

Log_2(M)

0

0.5

1

1.5

2

ks

EICG1

EICG7

ICG

FISH

MINSTD

ANSIC

RANDU

0

0.5

1

1.5

2

EICG1

EICG7

ICG

FISH

MINSTD

ANSIC

RANDU

18
19

20
21

22
23

24
25

26

Log_2(M)

0

0.5

1

1.5

2

ks

EICG1

EICG7

ICG

FISH

MINSTD

ANSIC

RANDU

0

0.5

1

1.5

2

Figure 4.18: BitStream(8,4): Dimensions 4 and 5

4.3. RUN TEST 67Interpretation: Like the Digit Test, the overlapping serial test does uncoverde�ciencies in the linear generators. Whereas the setup in the Digit Test focusedon the number of bits you can take from a number while still getting good distri-butions, Wegenkittl turned his attention to the number of tuples one can generatebefore the PRNG fails. The results are basically the same: even the best LCGhas a limited load-capability; if you start to do heady-duty computations usingmany PRN you must be careful not to run into the breaking point of the LCG.The traditionally rule of thumb concerning which percentage of the period lengthone can safely use (up to pperiod) seems to be sound for the LCG.The inversive generators are not perfect either, even they tend to fail the testat some point. But their load-capability is much better. Even when taking ahigh number of samples, their distribution quality decreases quite slowly.4.3 Run TestA completely di�erent kind of empirical test is the run test. The basic ideabehind this test is to check if the occurrences of runs conforms to its expectedvalue. There is a variety of di�erent ways to implement this idea, but we willonly describe the idea and Entacher's implementation [23].First of all, what do we mean by \runs" ? In a binary context, that is sequenceconsisting only of two symbols, a run is de�ned as a subsequence consisting onlyof one symbol. For example, consider the sequence(1;|{z} 0; 0; 0;| {z } 1; 1; 1; 1;| {z } 0; 0;|{z} 1;|{z} 0;|{z} 1;|{z} 0; 0; 0;| {z } 1; 1; 1; 1| {z })in which the brace indicate the runs.As the common pseudorandom sequences are far from being binary, one hasto transform them �rst. A straight forward way of doing this isxn 7! sign(xn+1 � xn);which is binary as xn+1 6= xn for PRNG we consider. A run of 1s of length kcorresponds to a monotonically increasing subsequence of length k + 1 in theoriginal sequence called a \run up". The distribution properties of these runs ina sequence of \really random numbers" is well known.According to Wolfowitz [62] (see also Knuth [49, p. 68]) Entacher constructedan asymptotically �2-distributed test statistic Ur which involves counts for as-cending runs up to length r. The calculation done by Entacher involved evaluat-ing U6 100 times for each generator and testing this empirical distribution againstthe expected one using a KS test.

68 CHAPTER 4. EMPIRICAL TESTSWe will focus on Entacher's results concerning the behaviour of LCGs andEICGs. The list of generators tested include the previously de�ned generatorsFISH, ANSI, MINSTD, and RANDU, as well as two other LCGs with a bad latticestructure: LCG5 = lcg(231; 231 � 3; 0; 1) and LCG6 = lcg(231 � 1; 221 + 1; 0; 1).As examples for the EICG Entacher used eicg(231 � 1; a; 0; 0) with parametera 2 f25; 210; 215; 220; 225; 230g which he labeled EICG1 to EICG6.The following �gures3 depict the results; The sample size was varied between212 and 224 (the labels are log2(N)), the height of each square shows the resultingKS statistic. If the square is coloured dark gray, then the KS statistic exceedsthe critical value for the signi�cance level 0.01.

FISH

ANSI

MINSTD

RANDU
LCG5

LCG6

12
14

16
18

20
22

24

Sample Size

0
0.5
1
1.5
2

KS

FISH

ANSI

MINSTD

RANDU
LCG5

LCG6

0
0.5
1
1.5
2

EICG1

EICG2

EICG3

EICG4
EICG5

EICG6

12
14

16
18

20
22

24

Sample Size

0
0.5
1
1.5
2

KS

EICG1

EICG2

EICG3

EICG4
EICG5

EICG6

0
0.5
1
1.5
2

Figure 4.19: LCGs and EICGs in the Run TestInterpretation: The run test seems to be able to distinguish good LCGs frombad ones. All basically randomly chosen EICG pass the test without any prob-lems, showing again that the EICG is not sensitive to the parameter selection.Another conclusion from this test is that subsequences taken by a leap frogtechnique are save when using EICGs, whereas such sequences taken from anLCG may exhibit a bad lattice and can fail the run test. See an upcoming paperfrom Entacher [23] for details.
3Once again we want to thank the author of the original paper, Karl Entacher, for hissupport and the graphics �les.

4.4. WEIGHTED SPECTRAL TEST 694.4 Weighted Spectral TestAs mentioned on page 43, the weighted spectral test is a promising new approachto assess the quality of pseudorandom numbers, see Hellekalek [39, 40], Hellekalekand Niederreiter [45], and Hellekalek and Leeb [43]. One numerical realization ofthe weighted spectral test is the diaphony, see Hellekalek and Niederreiter [45].Both the diaphony as well as the classic spectral test [9] approach the pointset from a Fourier point of view, looking for any disturbances in the spectrum. Ifthe point set has lattice structure (as in the case of LCGs), the �rst wavelengthwhich yields a non-zero Fourier coe�cient corresponds to the largest distancebetween hyperplanes. Where the classic spectral test targets just this wavelength,the diaphony tries to include more information, namely a weighted sum over allpossible wavelengths. High wavelengths (which correspond to low frequencies)in the point set indicate a large scale imbalance, whereas high frequencies target�ne structures in the set. As these �ne structures are unavoidable at the certainpoint, higher frequencies are considered less important and thus will contributelittle to the diaphony.So basically the s-dimensional diaphony is a weighted sum over the correlationcoe�cients of the point set, which are basically the Weyl sums SN we encounteredin Section 3.3, see [40] for details.There are close ties between the discrepancy and the diaphony. One canbound one in terms of the other (see Stegbuchner [78]), one can interpret it, too,as integration error (see James, Hoogland and Kleiss [46]), and it is possible toderive Lemmata similar to those in section 3.3.2 (see [40]).Whereas it is virtually impossible to do any reasonable empirical studies withdiscrepancy due to its computational complexity of O(N s), the diaphony onlyneeds O(s �N2) steps to calculate it. Thus it is possible to conduct empirical testusing this �gure of merit. In the following we will describe the results obtainedby Hellekalek [39].The test procedure was as follows: For a given generator, for a given dimensions, and a given sample size N , the diaphony F 2N was evaluated for 20 samples ofnon-overlapping s-tuples. As the expected value for F 2N equals 1=N , Hellekalekmultiplied the diaphony by N to get the same expected value for all sample sizes,see Leeb [59] for the theoretical distribution.In the graphics4, the abscissa shows the sample size as log2N and the ordinatethe average value over the 20 samples. For each generator from the now familiarset (see Table 4.2) the calculation was done in dimensions 2 (4), 3 (�), 4 (?), 5(�), and dimension 6 (j).4We like to thank Peter Hellekalek for the permission to use his graphics, as well as forproviding the mathematical background.

70 CHAPTER 4. EMPIRICAL TESTS

2 4 6 8 10 12 14
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

Figure 4.20: Diaphony for RANDU

2 4 6 8 10 12 14
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

Figure 4.21: Diaphony for ANSI

4.4. WEIGHTED SPECTRAL TEST 71

2 4 6 8 10 12 14
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

Figure 4.22: Diaphony for MINSTD

2 4 6 8 10 12 14
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

Figure 4.23: Diaphony for FISH

72 CHAPTER 4. EMPIRICAL TESTS

2 4 6 8 10 12 14
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

Figure 4.24: Diaphony for ICG

2 4 6 8 10 12 14
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

Figure 4.25: Diaphony for EICG1

4.5. OTHER RESULTS 734.5 Other ResultsFrank H�artel [36] implemented an impressive array of PRNG and compared theirperformance under a variety of statistical tests. Unfortunately he used only oneEICG (eicg(1000081; 240318; 197; 0)), whose modulus (p < 220) is far too smallto be able to compete with generators featuring a period length of 232. We willtherefore not elaborate on his results.Both Eichenauer-Herrmann and L'Ecuyer presented results of empirical testconcerning the minimal distance between vectors of PRN on the MC&QCM'96conference in Salzburg. Although the results have not been published yet, onecan summarize them as follows: due to their lattice structure, LCGs are notable to simulate the correct behaviour of the test statistic whereas EICGs withthe same period length pass this test with
ying colors. I refer to the upcomingproceedings for details.

Chapter 5ImplementationThis section discusses the implementation of the EICG pseudorandom numbergenerator using a standard procedural programming language. We will use Csyntax for the code printed here.The algorithms presented here were used to write a generic and portable PRNGlibrary which implements not only the EICG, but other congruential generators,too. This library (written in ANSI C) is available on the Internet from the pLabWWW server at http://random.mat.sbg.ac.at/.5.1 OverviewIf we look at the de�nition of the EICG (see p. 1.3.4), we see that gener-ating the numbers is a two step procedure. First we have to compute theyn := a(n0 + n) + b, a calculation operating in the �nite �eld Zp which can bedone by standard integer calculation modulo p. The second step is the scalingoperation xn := yn=p, which we will implement as a straight forward
oatingpoint division.We will thus focus on the �rst step, which includes the following three opera-tions1. Inversion modulo p2. Multiplication modulo p3. Addition modulo p.How they are best implemented depends on how numbers are represented in thecomputer. We use integer arithmetic based on the native integer format of thecomputer. Most current workstations use 32-bit integers which can hold numbers74

5.2. MODULAR INVERSION 75from �231 to 231�1. This limits the choice of the modulus to values smaller than231, a common choice is the Mersenne prime 231 � 1. Large values for p give theresulting PRN a �ne resolution, but one has to pay for this with an increase incalculation time. If this resolution, as well as the period length it implies, arenot adequate, one can use the technique of combining generators (see p. 16), togenerate even better pseudorandom numbers.5.2 Modular InversionFirst we turn to the problem of modular inversion (denoted throughout this textby overlining (a) the operand) which is de�ned asa = (a�1 for a 6= 00 for a = 0;where a�1 is the uniquely de�ned element of Z�p = Zpnf0g such that aa mod p = 1.The special case a = 0 is easily handled, what remains is to �nd a�1 for a 6= 0.There are two di�erent ways to compute the inverse, one of them is to utilize thefact that a'(p) � 1 (mod p)by the well-known theorem of Euler{Fermat, and thus a'(p)�1 � a (mod p)holds. In our case here the modulus is prime, thus '(p), Euler's totient function,is equal to p� 1, which gives usa � ap�2 (mod p):Evaluating ab (mod p) is a well-known exercise in computational number theory(e.g. in the RSA cryptosystem). It can be solved in logarithmic time [8, p.829], but intermediate results exceed the domain [�p; p]. This fact renders animplementation di�cult because of the limited integers available on a computer.A di�erent approach is to use an extended version of Euclid's algorithm. Thisalgorithm is usually used to calculate the greatest common divisor of two num-bers, but it can also be used to calculate the integers x and y which ful�ll thelinear diophantic equation ax + by = gcd(a; b). By substituting p for b andobserving that gcd(a; p) = 1, one getsax + py = 1;which can be rewritten as ax � 1 (mod p):This algorithm to calculate x and y is based on the following recursion: Thedivision with remainder a = qb + r is used to calculate q and r. If we can �nd

76 CHAPTER 5. IMPLEMENTATION=** Extended Euclid's Algorithm, Recursive version.** From: "Algorithms" by Corman, Leiserson, & Rivest [8]. page 812** Input:* a,b Two integers** Output:* int d,x,y which satisfy gcd(a,b) = d = ax + by 10**=void rec eeuclid(int a,int b,int *d,s int *x,s int *y)fint dbar,xbar,ybar;if (0 == b)f*d = a;*x = 1; 20*y = 0;return;grec eeuclid(b,a%b,&dbar,&xbar,&ybar);*d = dbar;*x = ybar;*y = xbar � (a=b) * ybar;g 30Figure 5.1: Euclid's algorithm, recursive version.x0 and y0 which ful�ll x0b + y0r = 1, then x = y0 and y = x0 � qy0 will satisfyxa + yb = 1. Since b < a and r < b the question how to �nd the x0 and y0 willlead to a trivial case.Figure 5.1 shows a straight-forward recursive implementation of the extendedEuclid's algorithm. Figure 5.2 demonstrates how the modular inversion can bebased on rec eeuclid.This recursive implementation is not very e�cient due to the overhead causedby the repeated function calls. Although rec eeuclid is not end-recursive, it ispossible to rewrite it as an iterative function [49]. Figure 5.3 is a C implementationof the modular inversion using this method. A further optimization [76, p. 521]is to unroll the loop twice to avoid unnecessary swapping of the variables in eachiteration.

5.2. MODULAR INVERSION 77=** Modular Inversion. Based on Euclid's Algorithm** Input:* a,p Two int, gcd(a,p) should be 1 !** Output:* int a' which satis�es:* a' * a = 1 (for a != 0)* a' = 0 (for a == 0) 10**=int inverse(int a,int p)fint gcd,inv,temp;if (a == 0)return(0);rec eeuclid(a,p,&gcd,&inv,&temp); 20if (inv < 0)inv += p;if (gcd != 1)fputs("inverse: Can't invert !", stderr);return(inv);g Figure 5.2: Modular inversion based on rec eeuclidGordon [34] describes a modi�cation which uses shift operations to avoid mul-tiplications and divisions. This does pay on certain computers, for example onSPARC, R4000, or Alpha AXP based systems this approach is faster. On theother hand, the division on the i486 is comparatively fast, thus the original versionruns faster there.The number of recursive calls in Euclid's algorithm is of the order O(lg b), see[8, p. 810]. An equivalent statement is, that the arguments of these calls decreaseexponentially. Another way to put this is that rec eeuclid will need about thesame number of recursive calls to get from b � 16384 to b � 128 as it needs fromb � 128 to the end of the recursion.This observation leads to another technique to speed up the computation ofthe multiplicative inverse: For all a; b smaller than some threshold we use a tableof precomputed values for x and y instead of continuing the recursion. This way

78 CHAPTER 5. IMPLEMENTATIONsome recursive calls can be avoided.Threshold Memory used Avg. Steps Std.dev. TimeNo Table - 17.57 3.27 43.76 s16 256 Bytes 16.72 3.10 45.40 s32 1 KByte 16.11 3.04 43.84 s64 4 KByte 15.52 2.98 42.32 s128 16 KByte 14.93 2.92 41.03 s256 64 KByte 14.35 2.86 39.71 s512 512 KByte 13.77 2.80 39.31 sTable 5.1: Average number of recursive calls in Euclid's Algorithm.To test the advantages of this approach, we compared it with the optimizediterative implementation. Table 5.1 lists the timings of my test case, that iscalculating the multiplicative inverses of 2147483 uniformly distributed numbersmodulo 231 � 1.As long as the threshold is not larger than 256, a byte is enough to hold anelement of the table. A threshold of 512 forces the program to resort to 16-bitintegers which doubles the memory requirements. It is hard to make a generalstatement which threshold is best, too much depends on the cache size, memoryaccess speed, and on memory available. We have set the default to 256, whichseems to result in a reasonable tradeo� between memory and speed.Our experience has shown that there is no single \best" algorithm, too muchdepends on the relative execution speed of various elementary operations. Thusour implementation includes three di�erent algorithms as well as a pro�ling pro-gram which can be used to select the one which is running fastest on the user'scomputer.5.3 Modular MultiplicationThe problem of evaluating a �n (mod p) lies in the limited range of the integersavailable in common programming languages. The intermediate result an of thestraightforward implementation is very likely not to �t in machine size integers, soone has to devise an algorithm to calculate an (mod p) in which all intermediateresults are representable on a b-bit computer.One approach is the following algorithm due to Bratley, Fox, and Schrage [4,Sec. 6.5.2] which can compute an (mod p) if a2 < p. The idea is to factorthe modulus, but since this is not possible with primes, one has to deal withremainders, too. Let p = aq + r

5.3. MODULAR MULTIPLICATION 79where q = p div a and r = p mod a:Then one can rewrite an (mod p) asan (mod p) = an� p (an div p)= an� p (n div q) + p (n div q � an div p)| {z }�(n)= an� aq (n div q)� r (n div q) + p �(n)= a (n� q (n div q))� r (n div q) + p �(n)= a (n mod q)� r (n div q) + p �(n)=
(n) + p �(n)If r < q, which is a direct consequence of a2 < p, evaluating
(n) does not posea numerical problem, for a (n mod q) < aq � pand r (n div q) < q (n div q) � n � p;and thus j
(n)j 2 f0; : : : ; p� 1g. Since an (mod p) 2 f0; : : : ; p� 1g evaluating�(n) is unnecessary, because �(n) = 0 i�
(n) � 0 and �(n) = 1 i�
(n) < 0.This leads to the following algorithm:an (mod p) = (
(n) if
(n) � 0
(n) + p otherwiseq and r can be precomputed, calculating (n div q) and (n mod q) requires onsome computers only one instruction, so this is a very e�cient algorithm.For the usual choice of 231 � 1 for p the above can be applied for all a < 215.If p is smaller than that, then the limitation that all intermediate results shouldbe between �p and p is unnecessarily tight. On a b-bit computer all integersbetween �2b�1 and 2b�1 (exclusive) are representable. If we loosen the restrictionon a from a2 < p to a2 < 2b�2, the term r (n div q) is no longer bounded by p.But it can be shown that 2b�1 is an upper bound:r (n div q) < r (p div q)= r ((aq + r) div q)� r (a+ r div q)� a (a+ a div q)� 2a2< 2b�1We can now conclude that �2b�1 <
(n) < p and an (mod p) =
(n) (mod p).Thus one possible algorithm is this:

80 CHAPTER 5. IMPLEMENTATION1. Calculate q and r2. x = a (n mod q)� r (n div q)3. while(x < 0) x = x+ pThe while loop can execute at most d2b�1=pe times. L'Ecuyer and Côt�e [55]observed that in the average case very few iterations are executed, thus thisalgorithm is e�cient.If a is not restricted in any way (except of course by the requirement a < p) onecan use decomposition to reduce the multiplication to cases for which we alreadyhave solutions. This can be achieved by writing a in base 2d, where d = (b�2)=2(usually 15 on current 32-bit computers):a = a0 + a12d + a222dwith 0 � a0; a1 < 2d, and a2 2 f0; 1g. Thenan (mod p) == (a0n) mod p+ ((a1n) mod p)2d mod p+ ((a2n) mod p)22d mod p= ((((a22dn) mod p+ (a1n) mod p) mod p)2d mod p+ a0n mod p) mod p:In all four products modulo p one of the factors is bounded by 2d, so the previouslydiscussed algorithm can be applied. Figure 5.4 shows a C implementation of thismethod. It is used whenever it is not possible to resort to a simpler algorithm.5.4 Modular AdditionModular addition is simple to solve, though it is not trivial. A straightforwardimplementation might look like this:1. x = a + b2. if (x � p) then x = x� pThis is correct, as long as a+b is still fully representable with the data type used.Assuming that the usual signed integer type is used, an over
ow would occur ifa+ b is negative. It cannot happen that a + b is positive in spite of an over
ow,since a and b are both smaller than 2b�1 � 1 (assuming a b-bit computer) and(2b�1 � 1) + 1 wraps to �2b�1. If we detect an over
ow, subtracting p will bringthe result back into the interval [0; p� 1]. Thus this1. x = a + b2. if ((x < 0) or (x � p)) then x = x� pis a correct implementation.

5.4. MODULAR ADDITION 81
=** Modular Inversion. Direct implementation using Euclid's alg. [34]** Input:* a,p Two integers** Output:* Modular inverse of a modulo p. (0 if a == 0)**= 10int inverse2(int a,int p)fint q,d,u,v,inv,t;if (a <= 1) return(a);d = p; inv = 0; v = 1; u = a;dof q = d = u; 20t = d % u; =* On my Linux box this is faster than d � q*u *=d = u;u = t;t = inv � q*v;inv = v;v = t;g while (u != 0);if (inv < 0) inv += p; 30if (1 != d)fprintf(stderr,"Can't invert %d modulo %d !\n",a,p);return(inv);gFigure 5.3: Modular inversion based on Euclid's algorithm (iterative version).

82 CHAPTER 5. IMPLEMENTATION=** Modular Multiplication: Decomposition method (from L'Ecuyer & Cote [55])** Input:* a,n,p Three integers. a,n < p.** Output:* (a*n) mod p**= 10int mult mod(int a,int n,int p)fint H,a0,a1,q,qh,rh,k,x;H = 32768; =* 2 ^ 15 *=if (a < H)f a0 = a; x = 0; gelse f 20a1 = a = H ; a0 = a � H * a1;qh = p = H ; rh = p � H * qh;if (a1 >= H)fa1 = a1 �H; k = n = qh;x = H*(n� k*qh) � k * rh;while(x < 0) x += p;gelse x = 0; 30if (a1 != 0)fq = p = a1; k = n = q;x = x �k*(p�a1*q); if (x>0) x�=p;x = x + a1*(n�k*q); while (x<0) x+=p;gk = x = qh ; x = H*(x � k*qh) � k*rh;while (x<0) x+=p;g 40if (a0 != 0)fq = p = a0; k = n =q;x = x �k*(p�a0*q); if (x>0) x�=p;x = x + a0*(n�k*q); while (x<0) x+=p;greturn(x);g Figure 5.4: Decomposition method for modular multiplication.

Chapter 6SummaryLet us quickly summarize the main points of this thesis.� The application de�nes the quality criteria for the PRNG. Thereis no such thing as the perfect (\one size �ts all") pseudorandom numbergenerator; one should always consider the application when choosing a gen-erator.� Testing a PRNG is a tricky task. While testing can increase the con-�dence in the generator, it is often not possible to construct a test whichtargets the same properties in the number as will be relevant in the appli-cation.� Do not rely on a single family of PRNG ! As a consequence of theprevious two remarks, one should never trust the result of a simulationwithout veri�cation runs using a completely di�erent PRNG.� The de�nition of the EICG.Let p be a (large) prime and a; b; n0 2 Zp. The explicit inversive congruentialgenerator (abbreviated as \EICG") with parameters p; a; b; and n0 de�nes asequence (yn)n�0 in Zp byyn := a � (n0 + n) + b (n � 0)and a sequence eicg(p; a; b; n0) = (xn)n�0 of pseudorandom numbers in [0; 1[by xn := ynp (n � 0);where c denotes the multiplicative inverse modulo p extended by 0 := 0.� The choice of parameters is easy for the EICG. As long as a 6= 0, theperiod length will always be p. There are no theoretical results indicating83

84 CHAPTER 6. SUMMARYthat some parameters might result in bad distribution properties. This isa major advantage over the LCG, where every set of parameters must beextensively screened using the spectral test.� EICGs with the same modulus are closely related. These relation in-clude shifting the sequence (di�erent n0 or b), and taking every k-th number(di�erent value for a).� Taking subsequences from EICGs is safe. As a consequence of thelast two statements, the EICG is perfectly suited to generate streams ofPRN. This can be done by taking either every k-th number or starting ata di�erent position in the stream. In both cases, the individual streams areguaranteed to be uncorrelated.� Tuples of EICG numbers show strong non-linear properties. SeeTheorems 3.1 and 3.7 for details.� The order of magnitude of the discrepancy of N s-tuples of EICGnumbers is close to the optimal value. For true random number we havean order of magnitude between N�1=2 and N�1=2plog logN . Examining tu-ples formed using the full period of the EICG we get D(s)p = O(p�1=2(log p)s)as an upper bound, and an existence statement which implies that this boundis the best possible up to the logarithmic factor.For parts of the period we get similar results: as an upper bound we haveD(s)N = O(N�1p1=2(log p)s+1), and we can show the existence of EICGs withD(s)N � cN�1=2 for some constant c.� EICGs perform well in empirical tests. In all comparisons to lineargenerators with about the same period length the inversive generators haveclearly proved their superiority.� The EICG is not particularly di�cult to implement. Short ande�cient algorithms for all steps involved have been published. A portableimplementation (ANSI-C) is available from the author.� The EICG algorithm runs at a reasonable speed. The multiplicativeinversions takes about log p steps; the EICG is thus considerably slower thanthe LCG. Whether this di�erence is noticeable in the overall computationtime depends heavily on the amount of processing done in the simulationproblem itself.� Combining EICGs is safe. Using compound techniques it easy to achievelong periods; excellent properties of the resulting numbers are guaranteed[17, 18].

Bibliography[1] S.L. Anderson. Random number generators on vector supercomputers andother advanced architectures. SIAM Rev., 32:221{251, 1990.[2] D.A. Andr�e, G.L. Mullen, and H. Niederreiter. Figures of merit for digitalmultistep pseudorandom numbers. Math. Comp., 54:737{748, 1990.[3] K. Binder and D.W. Heermann. Monte Carlo Simulation in StatisticalPhysics. An Introduction. 2nd corr. ed. Springer-Verlag Heidelberg NewYork, 1992.[4] P. Bratley, B. L. Fox, and L. E. Schrage. A Guide to Simulation. SpringerVerlag, second edition, 1987.[5] G.J. Chaitin. Randomness and mathematical proof. Sci. Amer., 232:47{52,1975.[6] Wun-Seng Chou. On inversive maximal period polynomials over �nite �elds.Appl. Algebra Engrg. Comm. Comput., 6:245{250, 1995.[7] T. Cochrane. On a trigonometric inequality of Vinogradov. J. Number Th.,27:9{16, 1987.[8] Thomas H. Corman, Charles E. Leiserson, and Ronald L. Rivest. Introduc-tion to Algorithms. The MIT Press, �rst edition, 1989.[9] R.R. Coveyou and R.D. MacPherson. Fourier analysis of uniform randomnumber generators. J. Assoc. Comput. Mach., 14:100{119, 1967.[10] A. De Matteis and S. Pagnutti. Parallelization of random number generatorsand long-range correlations. Numer. Math., 53:595{608, 1988.[11] G. Dueck and T. Scheuer. Threshold Accepting: A General Purpose Algo-rithm Appearing Superior to Simulated Annealing. Journal of ComputationalPhysics, pages 161{175, 1990.[12] W.F. Eddy. Random number generators for parallel processors. J. Comp.Appl. Math., 31:63{71, 1990. 85

86 BIBLIOGRAPHY[13] J. Eichenauer, H. Grothe, and J. Lehn. Marsaglia's lattice test and non-linearcongruential pseudo random number generators. Metrika, 35:241{250, 1988.[14] J. Eichenauer and J. Lehn. A non-linear congruential pseudo random numbergenerator. Statist. Papers, 27:315{326, 1986.[15] J. Eichenauer-Herrmann. Nonoverlapping pairs of explicit inversive congru-ential pseudorandom numbers. Monatsh. Math., 119:49{61, 1995.[16] J. Eichenauer-Herrmann. Modi�ed explicit inversive congruential pseudoran-dom numbers with power of 2 modulus. Statistics and Computing, 6:31{36,1996.[17] J. Eichenauer-Herrmann and F. Emmerich. A review of compound meth-ods for pseudorandom number generation. In P. Hellekalek, G. Larcher,and P. Zinterhof, editors, Proceedings of the 1st Salzburg Minisymposiumon Pseudorandom Number Generation and Quasi-Monte Carlo Methods,Salzburg, Nov 18, 1994, volume ACPC/TR 95-4 of Technical Report Series,pages 5{14. ACPC { Austrian Center for Parallel Computation, Universityof Vienna, Austria, 1995.[18] J. Eichenauer-Herrmann and F. Emmerich. Compound inversive congruen-tial numbers: an average-case analysis. Math. Comp., to appear, 65:215{225,1996.[19] J. Eichenauer-Herrmann and H. Grothe. A remark on long-range correlationsin multiplicative congruential pseudo random number generators. Numer.Math., 56:609{611, 1989.[20] J. Eichenauer-Herrmann and E. Herrmann. A survey of quadratic and in-versive congruential pseudorandom numbers. Submitted to Proceedings ofthe Second International Conference on Monte Carlo and Quasi-Monte CarloMethods in Scienti�c Computing, Salzburg, July 9{12, 1996.[21] J. Eichenauer-Herrmann and K. Ickstadt. Explicit inversive congruentialpseudorandom numbers with power of two modulus. Math. Comp., 62:787{797, 1994.[22] J. Eichenauer-Herrmann and H. Niederreiter. Bounds for exponential sumsand their applications to pseudorandom numbers. Acta Arith., 67:269{281,1994.[23] K. Entacher. Selected random number generators in run tests. Preprint,Institut f�ur Mathematik, Universit�at Salzburg, Austria, 1996.[24] K. Entacher and P. Hellekalek. Parallel stochastic simulation: inversive pseu-dorandom number generators. In G. De Pietro and P. Zinterhof A. Giordano,M. Vajter�sic, editors, Proceedings of the International Workshop Parallel

BIBLIOGRAPHY 87Numerics 95, Sorrento, Italy, September 27{29, 1995, pages 1{14. IRSIPInstitute of the NRC of Italy, Naples, 1995.[25] K. Entacher and H. Leeb. Inversive pseudorandom number generators: em-pirical results. In Proceedings of the Conference Parallel Numerics 95, Sor-rento, Italy, September 27{29, 1995, 1995.[26] G.S. Fishman. Multiplicative congruential random number generators withmodulus 2�: an exhaustive analysis for � = 32 and a partial analysis for� = 48. Math. Comp., 54:331{344, 1990.[27] G.S. Fishman and L.R. Moore. A statistical evaluation of multiplicativecongruential random number generators with modulus 231 � 1. J. Amer.Statist. Assoc., 77:129{136, 1982.[28] G.S. Fishman and L.R. Moore. An exhaustive analysis of multiplicativecongruential random number generators with modulus 231�1. SIAM J. Sci.Statist. Comput. (see also the Erratum, ibid. 7(1986), p. 1058), 7:24{45,1986.[29] M. Flahive and H. Niederreiter. On inversive congruential generators forpseudorandom numbers. In G.L. Mullen and P.J.-S. Shiue, editors, FiniteFields, Coding Theory, and Advances in Communications and Computing,pages 75{80. Dekker, New York, 1992.[30] Mark Fleischer. Simulated Annealing: Past, Present, and Future. In Pro-ceedings of the 1995 Winter Simulation Conference, pages 155{161, 1995.[31] J. Foley, A. van Dam, S. Feiner, and J. Hughes. Computer Graphics: Prin-ciples and Practice. Addison-Wesley, second edition, 1990.[32] I. Goldberg and D. Wagner. Netscape SSL implementation cracked! Avail-able on the WWW athttp://tezcat.com/web/security/items/ssl-news.txt.[33] T. Gonzales, S. Sahni, and W.R. Franta. An e�cient algorithm for theKolmogorov-Smirnov and Lillefors tests. ACM Trans. Mathem. Softw., 3:60{64, 1977.[34] J. Gordon. Fast Multiplicative Inverse in Moduar Arithmetic. In H. J. Bekerand F. S. Piper, editors, Cryptography and Coding. Oxford Clarendon Press,1989.[35] J.H. Halton. Pseudo-random trees: multiple independent sequence genera-tors for parallel and branching computations. J. Comp. Physics, 84:1{56,1989.[36] F. H�artel. Zufallszahlen f�ur Simulationsmodelle. PhD thesis, Hochschule St.Gallen f�ur Wirtschafts-, Rechts- und Sozialwissenschaften, St. Gallen, 1994.

88 BIBLIOGRAPHY[37] S. Heinrich. E�cient algorithms for computing the L2 discrepancy. InternerBericht, Fachbereich Informatik, Universit�at Kaiserslautern, 1995.[38] P. Hellekalek. Study of algorithms for primitive polynomials. Report D5H-1,CEI-PACT Project, WP5.1.2.1.2, Research Institute for Software Technol-ogy, University of Salzburg, Austria, 1994.[39] P. Hellekalek. Correlations between pseudorandom numbers: theory andnumerical practice. In P. Hellekalek, G. Larcher, and P. Zinterhof, editors,Proceedings of the 1st Salzburg Minisymposium on Pseudorandom NumberGeneration and Quasi-Monte Carlo Methods, Salzburg, Nov 18, 1994, volumeACPC/TR 95-4 of Technical Report Series, pages 43{73. ACPC { AustrianCenter for Parallel Computation, University of Vienna, Austria, 1995.[40] P. Hellekalek. On correlation analysis of pseudorandom numbers. Submittedto Proceedings of the Second International Conference on Monte Carlo andQuasi-Monte Carlo Methods in Scienti�c Computing, Salzburg, July 9{12,1996, 1996.[41] P. Hellekalek and K. Entacher. Revised implementation and testing ofthe algorithms for IMP-polynomials. Report D5H-3, CEI-PACT Project,WP5.1.2.1.2, Research Institute for Software Technology, University ofSalzburg, Austria, 1995.[42] P. Hellekalek and K. Entacher. Tables of IMP-polynomials. Report D5H-4,CEI-PACT Project, WP5.1.2.1.2, Research Institute for Software Technol-ogy, University of Salzburg, Austria, 1995.[43] P. Hellekalek and H. Leeb. Dyadic diaphony. To appear in Acta Arithmetica,1996.[44] P. Hellekalek, M. Mayer, and A. Weingartner. Implementation of algorithmsfor IMP-polynomials. Report D5H-2, CEI-PACT Project, WP5.1.2.1.2, Re-search Institute for Software Technology, University of Salzburg, Austria,1994.[45] P. Hellekalek and H. Niederreiter. The weighted spectral test: diaphony. Inpreparation, 1996.[46] F. James, J. Hoogland, and R. Kleiss. Multidimensional sampling for simu-lation and integration: measures, discrepancies, and quasi-random numbers.Preprint submitted to Computer Physics Communications, 1996.[47] M.H. Kalos and P.A. Whitlock. Monte Carlo Methods, Volume I: Basics.Wiley, New York, 1986.[48] J. Kiefer. On large deviations of the empiric d.f. of vector chance variablesand a law of the iterated logarithm. Paci�c J. Math., 11:649{660, 1961.

BIBLIOGRAPHY 89[49] D. E. Knuth. The Art of Computer Programming, Vol. 2: SeminumericalAlgorithms. Addison-Wesley, Reading, MA, second edition, 1981.[50] L. Kuipers and H. Niederreiter. Uniform Distribution of Sequences. Wileyand Sons, New York London Sydney Toronto, 1974.[51] J. C. Lagarias. Pseudorandom numbers. Statistical Science, 8:31{39, 1993.[52] P. L'Ecuyer. Random numbers for simulation. Comm. ACM, 33:85{97, 1990.[53] P. L'Ecuyer. Testing random number generators. In J.J. Swain et al., editor,Proc. 1992 Winter Simulation Conference (Arlington, Va., 1992), pages 305{313. IEEE Press, Piscataway, N.J., 1992.[54] P. L'Ecuyer. Uniform random number generation. Ann. Oper. Res., 53:77{120, 1994.[55] P. L'Ecuyer and S. Côt�e. Implementing a Random Number Package withSplitting Facilities. ACM Transactions on Mathematical Software, 17(1):98{111, March 1991.[56] H. Leeb. pLab { a system for testing random numbers. In M. Vajter�sic andP. Zinterhof, editors, Proceedings of the International Workshop on Par-allel Numerics '94, Smolenice, Sept. 19{21, pages 89{99. Slovak Academyof Sciences, Institute for Informatics, 1994. Available on the internet athttp://random.mat.sbg.ac.at.[57] H. Leeb. On the digit test. In P. Hellekalek, G. Larcher, and P. Zinter-hof, editors, Proceedings of the 1st Salzburg Minisymposium on Pseudoran-dom Number Generation and Quasi-Monte Carlo Methods, Salzburg, Nov 18,1994, volume ACPC/TR 95-4 of Technical Report Series, pages 109{121.ACPC { Austrian Center for Parallel Computation, University of Vienna,Austria, 1995.[58] H. Leeb. Random Numbers for Computer Simulation. Master's thesis, In-stitut f�ur Mathematik, Universit�at Salzburg, Austria, 1995.[59] H. Leeb. A weak law for diaphony. Rist++ 13, Research Institute for Soft-ware Technology, University of Salzburg, 1996.[60] H. Leeb and S. Wegenkittl. Inversive and linear congruential pseudorandomnumber generators in empirical tests. submitted to ACM Trans. Modelingand Computer Simulation, 1996.[61] V. F. Lev. On two versions of L2-discrepancy and geometrical interpretationof diaphony. Acta Math. Hungar., 69:281{300, 1995.[62] H. Levene and J. Wolfowitz. The covariance matrix of runs up and down.Annals Math. Stat., 15 :59{69, 1944.

90 BIBLIOGRAPHY[63] R. Lidl and H. Niederreiter. Finite Fields. Addison-Wesley, Reading, Mass.,1983.[64] G. Marsaglia. Random numbers fall mainly in the planes. Proc. Nat. Acad.Sci., 61:25{28, 1968.[65] G. Marsaglia. A current view of random number generators. In L. Bril-lard, editor, Computer Science and Statistics: The Interface, pages 3{10,Amsterdam, 1985. Elsevier Science Publishers B.V. (North Holland).[66] L. Ming and P. Vit�any. An Introduction To Kolmogorov Complexity And ItsApplications. Texts and Monographs in Computer Science. Springer Verlag,New York, 1993.[67] C.J. Moreno and O. Moreno. Exponential sums and Goppa codes: I. Proc.Amer. Math. Soc., 111:523{531, 1991.[68] Netscape Communications Corporation. Potential Vulnerability in NetscapeProducts. Available on the WWW athttp://www.netscape.com/newsref/std/random_seed_security.html.[69] H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Meth-ods. SIAM, Philadelphia, USA, 1992.[70] H. Niederreiter. On a new class of pseudorandom numbers for simulationmethods. J. Comput. Appl. Math., 56:159{167, 1994.[71] H. Niederreiter. New developments in uniform pseudorandom number andvector generation. In H. Niederreiter and P.J.-S. Shiue, editors, Monte Carloand Quasi-Monte Carlo Methods in Scienti�c Computing, volume 106 ofLecture Notes in Statistics. Springer-Verlag, Heidelberg New York, 1995.[72] S.K. Park and K.W. Miller. Random number generators: good ones are hardto �nd. Comm. ACM, 31:1192{1201, 1988.[73] C. A. Pickover. Random number generators: pretty good ones are easy to�nd. The Visual Computer, 11:369{377, 1995.[74] B. D. Ripley. Stochastic Simulation. John Wiley, New York, 1987.[75] R. A. Rueppel. Stream Ciphers. In Gustavus J. Simmons, editor, Contempo-rary cryptology: the science of information integrity, chapter 2. IEEE Press,1992.[76] Bruce Schneier. Applied Cryptography. John Wiley & Sons, Inc., �rst edition,1993.[77] I.M. Sobol. Die Monte-Carlo-Methode. VEB Deutscher Verlag der Wis-senschaften, 1983.

BIBLIOGRAPHY 91[78] H. Stegbuchner. Zur quantitativen Theorie der Gleichverteilung mod 1. Ar-beitsberichte, Mathematisches Institut der Universit�at Salzburg, Salzburg,Austria, 1980.[79] O. Strauch. L2 discrepancy. Math. Slovaca, 44:601{632, 1994.[80] R.C. Tausworthe. Random numbers generated by linear recurrence modulotwo. Math. Comp., 19:201{209, 1965.[81] S. Tezuka. Uniform Random Numbers: Theory and Practice. Kluwer Aca-demic Publ., 1995.[82] S. Tezuka and M. Fushimi. Calculation of Fibonacci polynomials for GFSRsequences with low discrepancies. Math. Comp., 60:763{770, 1993.[83] J.F. Traub and H. Wo�zniakowski. The Monte Carlo algorithm with a pseu-dorandom generator. Math. Comp., 58:323{339, 1992.[84] S. Wegenkittl. Empirical Testing of Pseudorandom Number Generators.Master's thesis, Institut f�ur Mathematik, Universit�at Salzburg, Austria,1995.[85] S. Wegenkittl. On empirical testing of pseudorandom number generators. InG. De Pietro, A. Giordano, M. Vajter�sic, and P. Zinterhof, editors, Proceed-ings of the International Workshop Parallel Numerics 95, Sorrento, Italy,September 27{29, 1995, pages 113{123. IRSIP Institute of the NRC of Italy,Naples, 1995.[86] A. Weingartner. Nonlinear congruential pseudorandom number generators.Master's thesis, Universit�at Salzburg, Austria, 1994.[87] B.A. Wichmann and I.D. Hill. An e�cient and portable pseudo-randomnumber generator. Appl. Statist., 31:188{190, 1982. Corrections, ibid. 33,123 (1994).[88] P. Winker and Kai-Tai Fang. Application of threshold accepting to theevaluation of the discrepancy of a set of points. Research report, Universit�atKonstanz, Germany, 1995.

Curriculum vitae
Name: Otmar LendlDate of birth: May 8th, 1970Place of birth: Salzburg, AustriaParents: Ingeborg and Wolfgang LendlEducation:1976{1980: Volksschule in Salzburg1980{1988: Gymnasium in Salzburg1988{1996: University studies (M.Sc. in Mathematics)at the University of Salzburg

92

