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As a rule, random number generators are fragile and need to be treated with
respect. It’s difficult to be sure that a particular generator is good without an
enormous amount of effort in the various statistical test.

The moral is: do your best to use a good generator, based on the mathematical
analysis and the experience of others; just to be sure, examine the numbers to
make sure that they “look” random; if anything goes wrong, blame the
random-number generator !

— Robert Sedgewick, in “Algorithms” (Second Edition, 1988)
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Chapter 1

Introduction

The purpose of this thesis is to discuss the implementation of the explicit inversive
congruential generator (EICG) and the properties of the resulting pseudorandom
numbers. But before we delve into the details of the implementation or the
theoretical and empirical results we will take a closer look at the basic concept
of pseudo-random numbers.

What do we mean when we talk about pseudorandom numbers (PRN) ?
And for what purpose do we devise such elaborate means to artificially generate
megabytes of digital noise 7

1.1 What do we need Pseudo-Random Num-
bers for ?

To the uninitiated, all this pseudo-random numbers “business” seems to have no
serious applications. Everybody will come up with computer games as a field
where pseudo-random numbers are used to make the behaviour of the computer
less predictable. Steering the movements of some on-screen monster does not
require a high standard of randomness, almost any algorithm will suffice, provided
it is easy to implement and does not cost too much computing resources.

Another domain where we need PRN is wherever we need to model a more or
less random phenomenon of the real world. The simulation of a roulette table or
other forms of lottery might still be in the area of non-serious application, but
here the defects of the generator start to be an issue. Imagine this scenario: you
try to develop a winning strategy for blackjack and use a simulation to test your
algorithm. Any correlation between statistical defects and the strategy will lead
to a skewed result and may even change the sign of the expected outcome. Playing
that strategy in a real casino might cost you dearly. Thus it is important to make
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the choice of the generator an issue even in such non-scientific applications.

Simulation of random events is far from being limited to gambling, a significant
percentage of all simulations of natural phenomena contains a random compo-
nent. Whether that may be quantum effects, rainfall on a certain area, Brownian
motion, absorption pattern, bifurcation of tree roots, failure of technical compo-
nents, solar activity ..., in all cases we know at best the statistical properties of
an event. An analytical solution of the given problem based on probabilities is
often not possible. Thus one has to resort to stochastic simulation (see [3, 47, 74])
where one calculates the result of the overall simulation by choosing possible out-
comes of the underlying random events according to their respective probability.
Doing this a number of times should provide enough samples of the outcome to
estimate the probability of each possible result. Needless to say, the selection of
the realisations of the underlying random events is crucial to the correctness of
the whole calculation. Since this selection is done with the aid of PRN, their
quality plays an important role in the whole process.

Finding the use of PRN in stochastic simulation is not that surprising, but
finding them in algorithms for such mundane tasks like integration might need
some more explanation. Numerical integration is a common problem in a great
deal of real world problems. A big battery of algorithms (trapezoid method,
Simpson’s method, spline quadrature, adaptive quadrature, Runge-Kutta, ...)
was developed to minimize the calculation costs while increasing the accuracy
of the result. All these methods scale very badly with the dimension of the
integral, so a completely different approach is more appropriate there. The Monte
Carlo method (see [3, 47, 77, 83]) uses randomly selected samples of the function
to estimate the integral. Provided we know more about the behaviour of the
function (i.e. its total variation) and the distribution of the actual samples used
(as measured by their discrepancy), the inequality of Koksma-Hlawka (See page
44, [50, 69]) will give an error bound for this method. Since it is generally not
possible to calculate the exact value of the discrepancy of the random numbers
used for the integration, this error bound will only be a probabilistic one. In
order to get a deterministic one, the random numbers, which determine which
samples of the function will be evaluated, are replaced by numbers for which the
order of the discrepancy is known. This turns the Monte Carlo method into the
Quasi-Monte Carlo method.

One way to get such good point sets is to explicitly construct them with that
goal in mind (See [69] for a discussion of (¢,m, s)-nets and other methods.) or
use a PRNG for which an upper bound on the discrepancy is known. This is
one of the reasons why we will take a close look at this quantity in Section 3.3.
Not all applications of Quasi-Monte Carlo integration are labeled as such, as the
basic algorithm can be regarded as a simple heuristic. For example, distributed
ray tracing [31, p. 788] uses a set of randomly distributed rays to implement
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spatial and temporal antialiasing which amounts to an integration over both the
time-frame of the picture and the pixel’s spatial extension.

Non-deterministic algorithms often use pseudorandom numbers, too. These
algorithms are used to tackle problems for which a deterministic solution takes
too much time. Although they cannot guarantee success, they promise to find the
solution (or a sub-optimal one) within reasonable time. Examples for this kind
of algorithm are Pollard’s rho heuristic [8, p. 844] for integer factorization, the
Rabin-Miller primality test [8, p. 839], Simulated Annealing [30], and Threshold
Accepting [11].

Other algorithms use pseudorandom numbers for a different purpose. Instead
of using them directly for solving the problem they are used to randomize the
problem (or the algorithm) in order to avoid running into the same worst-case
behaviour again and again. See [8, p. 161] for an explanation of the rationale
behind randomized quick-sort.

Some cryptographic algorithms and protocols require a good source of ran-
dom numbers, too. Stream ciphers [76, p. 168f], for example, use the output of
a PRNG (termed keystream generator) to encrypt the plaintext. The security
of this cipher depends largely on the statistical quality of the keystream. Any
regularities of the PRNG can be used by the attacker to predict the next bits
and thus crack the code. No other domain of PRNG applications has such a high
demand on the “randomness” of the generated PRN. Algorithms which are good
enough for stochastic simulations are typically way too predictable to be useful
as a keystream generator for a stream cipher. Thus the field of cryptograph-
ically secure PRNG has amazingly little in common with the study of PRNG
for stochastic simulation on which we will focus in this thesis. Information on

cryptographically secure pseudorandom numbers can be found in [51], [81], and
[76].

Another application of pseudo-random numbers in the field of cryptology is
providing the “random” numbers needed for a variety of cryptographic protocols.
A well known example are the session keys generated for each transaction in
hybrid cryptosystems. As the recent debacle involving the Netscape Navigator
[32, 68] has shown, one must be very careful not to use a simple PRNG for this
task. Since this is more a matter of how to get the entropy needed for non-
predictability than one of analysing the properties of sequences of PRN we will
not elaborate on this subject in this thesis.

1.2 Criteria for PRN Generator Selection

Now that we know a bit about the various applications of PRN, let’s try to
formulate a few criteria for the selection of a good PRN generation algorithm. As
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we will see later it is crucial for the selection of the right PRNG to keep an eye
on the application of the PRN.

1.2.1 Reproducibility

This criterion may sound strange at first sight, since reproducibility contradicts
the intuitive notion of randomness, and indeed, rea/ random number generators
are extremely unlikely to ever repeat their output. So what are the advantages of a
generator which will produce the same sequence of pseudorandom numbers when
fed with the same parameters 7 Once again, we have to turn to the application
of which the generator is a component. In the case of a stochastic simulation the
benefit is twofold:

e As a scientific experiment, it should be possible to redo the same calculations
under the same conditions. This ensures that an independent verification of
the obtained result is possible.

e Debugging and verifying the simulation program is greatly helped by the
possibility of replaying the calculation. Otherwise it may not be possible to
determine if an unexpected outcome is caused by a systematic error in the
simulation setup, or whether it is just a statistic fluke.

In some areas, for example stream ciphers, reproducibility is a key requirement
for the application. Only very few applications, most of them in the area of
cryptography, do actually benefit from the use of non-reproducible PRN.

1.2.2 Statistical properties

It is clear that when we want to simulate a random variable with a PRNG, then
the output of the generator should model as closely as possible the expected
behaviour of instances of the random variable. If a simulation of a dice generates
a 7 or strongly favors the 6 we will not accept the generator. Other deviations
from the desired behaviour, e.g. correlations, are harder to detect, and methods
for systematically testing generators for such deficiencies have been the subject
of considerable mathematical work [49, 27, 53, 84], including some parts of this
thesis.

As we will see later, proving that a generator really has all the statistical
properties a real random number generator is supposed to have, is not possible.
So all we can do is to establish faith in the generator by testing it for some
properties.
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1.2.3 Empirical Test Results

Empirical testing usually involves using the PRN for a stochastic simulation with
a known result. If the computed results contradict the expected ones, the gen-
erator will be dismissed as not suitable for that kind of stochastic simulation. A
passed test will increase the faith that this generator will yield correct results in
real world problems. We will examine the significance of empirical test results
later in greater details.

A large battery of such tests was developed over the years, from the well
known tests of Knuth [49] and Marsaglia [65] to recent additions like the weighted
spectral test [39, 40, 45, 43]. See [53, §3.5.] for further references on testing
pseudorandom number generators.

1.2.4 Possibility of Theoretical Analysis

In order to make analytical investigations possible, most modern PRNG are de-
fined in quite simple mathematical terms. It is a tradeoff: The simpler the
algorithm, the easier it will be to prove statements concerning the quality of the
generated numbers. On the other hand, a convoluted algorithm appeals to the
intuition. History has shown [49, 73] that quite a few people could not resist
the temptation to build generators based on doing obscure transformations on
numbers stored in computers. Empirical analysis has shown that the quality of
such generators are often abysmal.

1.2.5 Results of Theoretical Analysis

Doing empirical studies on the properties of a PRNG is always possible, but
deriving properties of the generator output by pure mathematical study has a
lot of advantages. Whereas an empirical test can only cover one specific set of
parameters of a generator, it is sometime possible to make analytically proven
statements on the properties of PRN generated by a certain generator regardless
of the parameters used. In the same vein, an empirical test on a specific part of
the generator’s output, say the first billion numbers, may give us confidence on
the behaviour of the next billion numbers, but cannot offer any guarantee that
they will be equally good. Analytical results fall in the following categories:

e Basic parameter selection

For most generators not all possible parameters will result in a functional
generator. A typical question is that of gaining the largest possible period
length. For the LCG! this is just a set of simple conditions, for the ICG

!See 1.3 for the definition of this and other generators.
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it involves finding IMP polynomials [6, 29, 44, 41, 42, 24]. For compound
generators to work it is also necessary to obey certain analytically derived
constraints.

e Properties of the resulting PRN

For some generators it is possible to derive statements on some aspects of
the output. The well-known fact that tuples of LCG generated numbers
form lattices (see page 37) is one example.

e Estimates and bounds

Especially the discrepancy has been the subject of analytical study. There
are numerous estimates and bounds for various generators.

1.2.6 Efficiency

With all the mathematical discussions about the merits of PRN generated by a
new algorithm one should not forget the fact that we need to actually implement
this algorithm on a real computer. There are a few things which should be noted
here:

e Implementation costs

Implementing (i.e. programming) an algorithm is usually a one-time invest-
ment of effort. Once the code is there, integrating it into a larger project
is more or less trivial. What are the difficulties in implementing a typical
pseudorandom number generation algorithm ? As we will see later in Chap-
ter 5, the main problem lies in the handling of large integers and performing
standard mathematical operations like addition and multiplication on them.
For inversive generators finding the multiplicative inverse in Z; is a required
operation, too.

e Computational costs

The execution of any algorithm requires both CPU and memory resources.
Typical PRNG (EICG, LCG, ICG, ...) have only very small memory re-
quirements. The code is very compact and the state information does only
require a few bytes.

As far as CPU consumption is concerned, a PC with Intel 486DX2-66 pro-
cessor is capable of executing the EICG algorithm about 70000 times in a
second. The author’s implementation of the LCG runs at about 400000 PRN
per second. The highly optimized system pseudorandom number generator
runs at over 700000 calls per second. These numbers are only provided to
give a rough feeling for the speed of the algorithms when using a modulus
in the range of 23!
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e Implications for the overall running time

As the generation of the PRN is usually performed on demand on the same
computer as the stochastic simulation for which they are used, they compete
for the same resources. The total running time for the simulation can be
described as the sum of the time used for the PRN generation plus the
time used for doing the actual calculations. The latter often dominates the
former, thus it does not make sense to try to gain overall speed by sacrificing
quality in the PRN algorithm.

1.2.7 Practical Aspects

After implementing the algorithm one has to find good parameters for that gen-
erator, too. Fortunately, for some common PRNG tables containing suitable
parameters have been published [28, 42, 2, 82], so there is no need to reinvent the
wheel there. Other generators like the EICG are known to be rather insensitive
to the choice of the parameters.

Another aspect is the possibility to generate independent streams of pseudo-
random numbers. Such streams are needed for parallel or vectorized computing.
See [54, §8], [1], [12], and [35] for more information on this topic.

1.3 Important Types of PRN Generators

There is no shortage on proposed pseudorandom number generation algorithms.
Every year new ideas on this topic are published, but only if the resulting PRN
have been subject to intensive theoretical and empirical study the generator might
have a chance to get used in a real world problem. As it is often the case with
competing inventions, an objective technological superiority does not immedi-
ately lead to market domination. Whether the generator is included in standard
programming libraries seems to be much more important than any published
results on the distribution properties of the numbers. A classic example is the
now infamous RANDU generator which was included in IBM’s Fortran library
and features an extremely poor distribution of triples composed of subsequent
numbers.

The following list introduces some of the most commonly used generators
as well as the inversive generators on which we will focus in this thesis. More
complete surveys on the current menagerie of PRNG can be found in [69, 71, 54].

In the following M denotes a positive integer (termed modulus) and Z,, =
{0,1,..., M — 1} represents the system of all residues modulo M. With the
addition and multiplication modulo M the set Z,; acquires the algebraic structure
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of a finite ring. If the context makes it clear that we operate in the ring (Zys, +, )
we will omit the trailing “mod”.

1.3.1 The Linear Congruential Generator

Definition 1.1 Let a,b,yo € Zy. The linear congruential generator (abbreviated
as “LCG”) with parameters M, a,b, and yo defines a sequence (yn)n>o in Zy by

Un =G Yp_1 +b (n > 0)
and a sequence (x,)n>0 of pseudorandom numbers in [0, 1] by

_

i (n>0).

Ty

As the sequence leg(p, a, b, yo) = (Yn)n>0 is defined by a recursion of order one
on a finite set it must be periodic. The longest possible period length is M in
the case of b # 0 and M — 1 in the case of b = 0. The necessary conditions for
achieving these period lengths are well known. [69, p. 169]

The LCG is very popular. Its implementation is quite simple, especially if M
is chosen as 2 to the power of bits per native word of the computer (e.g. 23%)
which reduces the modulo operations to just ignoring the overflow. Due to its
simplicity and popularity the LCG has been subjected to intensive analytical and
empirical examination. The quality of the resulting PRN depends very much on
the choice of the parameters M, a, and b. Fortunately, tables containing good
parameters have been published, see [28, 26, 52].

The output of a LCG shows a strong intrinsic structure ([64], see also p.
37). A number of modifications were proposed to improve the quality of the
generator. One approach is to extend the recursion to higher orders by making y,
a function of y,, 1, ..., y,_. Other proposals modify the function which describes
the recursion. As the name says, the LCG uses the linear function f(y,) =
a-Yp—1+b (mod M) to calculate y, from y, ;. If we replace f by an arbitrary
function, we refer to the resulting PRNG as a general first-order congruential
generator [69, p. 177]. In order to guarantee maximal period length, the function
f must be carefully selected. For example, the quadratic congruential method, as
proposed by Knuth in [49, §3.2.2] uses a polynomial of degree 2 as the recursion
and a power of 2 as the modulus. See [69, p. 181f] for the conditions on the
parameters and analytical investigation on the resulting PRN.
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1.3.2 Shift-register Generators

Shift-register generators differ from standard linear congruential generators in
two respects. First, they use a higher-order linear recursion of the form

k-1
Ynik = D apYnsn  (mod M) (n >0) (1.1)
h=0

where M > 2 is the modulus, £ > 1 is the order of the recursion and ay, ..., ar_1
are elements of Z,,. Second, instead of just scaling the y,, to the unity interval to
get the pseudorandom numbers, the x,, are calculated from a block of consecutive
values ¥, ..., Yp+m- Thus it is no longer necessary to use a large modulus to get
a decent resolution of the resulting PRN. In order to simplify and optimize the
implementation of recursion, the common choice of M is the prime 2. On a L-bit
computer this allows the grouping of L steps into one operation.

Two techniques for the transformation of the sequence (y,),>o into a sequence
of pseudorandom numbers in [0, 1] are commonly used: The digital multistep
method puts

m
Ty = Zyanrjfl pij € [07 1[ (TL > 0) (12)
j=1
The Tausworthe generator [80] is a special case of this method.

More popular is the generalized feedback shift-register method (GSFR) which
can take advantage of the above mentioned blocking of L bits if hy, ..., hy >0
are selected suitably:

m

Ty, = Zyml” p? €0,1] (n>0). (1.3)

If the parameters are carefully selected the period length will in both cases be
per(z,) = p* — 1.

Shift register pseudorandom numbers have the advantage of a fast generation
algorithm and a period length independent of the limitations of the integers used

for the calculation. See [69, Chapter 9] and [54] for a discussion on the properties
of shift register pseudorandom numbers.

1.3.3 The Inversive Congruential Generator

A promising modification of the LCG was proposed by Eichenauer and Lehn in
[14]. We will only consider the case of a prime modulus p = M here. It involves
the operation of modular inversion in Z, which we will denote by an overline (€).

_ {cl for c € Zy,c#0

“Tl0 fore=0 (14
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The restriction to prime moduli guarantees the unique existence of an inversive
element in Z,. This definition implies ¢ =1 (mod p) for ¢ # 0.

Definition 1.2 Let p be a (large) prime and a,b,yo € Z,. The inversive congru-
ential generator (abbreviated as “ICG”) with parameters p,a,b, and yo defines a
sequence (Yn)n>o0 0 Ly, by

Yp =@ Y1 +0b (n > 0)
and a sequence (x,)n>0 of pseudorandom numbers in [0, 1] by

Y

) (n >0).

Tp

Empirical as well as analytical investigations indicate that the output of an
ICG is superior to the output of a LCG in several respects: longer usable sample
sizes [84, 60], less correlations between consecutive numbers [71].

1.3.4 The Explicit Inversive Congruential Generator

Analytical calculations have led to the following observation: We can describe the
generator as a function mapping n to y,. This self-map n — y,, in the finite field
Z, can be written as a uniquely defined polynomial g with degree d < p. If we
demand the sequence (y,),>0 to have the maximal possible period length p, the
polynomial g maps Z, onto itself and thus must be a permutation polynomial,
which is either linear (d = 1) or satisfies 3 < d < p — 2 according to [63, Cor.
7.5]. It turns out that the degree d plays an important role in the analytical
examination of the generator in a sense that a higher degree seems to indicate
better distribution properties [69, Theorems 8.2, 8.3] (see p. 55). The theorem
of Euler-Fermat tells us that evaluating ¢?=2 corresponds to the calculation of
the multiplicative inverse. In this spirit, the definition? of the EICG seems quite
natural:

Definition 1.3 Let p be a (large) prime and a,b,ng € Z,. The explicit inversive
congruential generator (abbreviated as “EICG”) with parameters p,a,b, and ny
defines a sequence (Yn)n>o in Ly, by

Yn =a-(ng+n)+0b (n>0)
and a sequence (x,)n>0 of pseudorandom numbers in [0, 1] by

Yn
= = n > 0).
" ( )

Ty -

2The original definition does not include ng.
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As long as a # 0 this generator will always have period length p. Once
again analytical and empirical investigations have shown that the output of this
generator is superior to that of an LCG. This will be the generator on which we
will focus our attention in this thesis. The other generators mainly serve as a
reference against which the EICG must compete.

1.3.5 EICG Variants

Two variations of the basic explicit inversive congruential generator have been
proposed. Both proposals substitute the prime modulus p with M = 2¥ (w > 4).
In the set Zj); we can define the modular inversion only for odd integers. This
inversion is once again defined by cc¢ =1 (mod M) for all odd c.

Definition 1.4 (Eichenauer-Herrmann and Ickstadt [21]) Let M be a power of
2, and a,b,ng € Zy with a = 2 mod 4 and b = 1 mod 2. The explicit inversive
congruential generator with power of two modulus with parameters p, a, b, and ny
defines a sequence (Yn)n>o in Ly by

Uni=a-(ng+mn)+b (n>0)
and a sequence (x,)n>0 of pseudorandom numbers in [0, 1] by

Y

) (n >0).

Ty

The conditions on a and b guarantee that the sequence xy,x1,... is purely
periodic with period M /2. While powers of 2 as modulus have certain advantages
for the implementation of the generator, all theoretical investigations [21, 15] on

the quality of the resulting numbers have concluded that this generator is inferior
to the original EICG.

In order to achieve a period length of M, Eichenauer-Herrmann [16] proposed
the following generator:

Definition 1.5 Let M be a power of 2, and a,b,nyg € Zyy with a =2 mod 4 and
b =1 mod 2. The modified explicit inversive congruential with parameters p,a, b,
and ny defines a sequence (Yn)n>o in Ly by

Yn:=n-a-(ng+n)+b (n>0)
and a sequence (x,)n>0 of pseudorandom numbers in [0, 1] by
e

) (n>0).

T
Although this modification does indeed increase the period length to M, the

theoretically derived properties of the resulting numbers are still inferior to the
original EICG.



16 CHAPTER 1. INTRODUCTION

1.3.6 Compound Techniques

An interesting meta-generator is the compound method. This is a very simple
and effective way to combine several streams of PRN into one single sequence
with (hopefully) superior properties. It works as follows: For 1 < j < r let
:r(()j), xgj), xgj) ... be a purely periodic sequence of pseudorandom numbers. Then
we get the compound sequence xy,xy,... by

,
xn=Zx§f)m0d1 forn=0,1,....
j=1

If the subsequences are purely periodic with distinct period per(x%j)) = pj, then
we have per(z,) = [Tj_, p;-

This compound method extends the well-known approach of Wichmann and
Hill [87]. The properties of the resulting sequence has been subject to a number
of publications; I refer to Niederreiter [71, 4.2] for all the references. Generally
speaking, the compound method preserves the basic properties of the underlying
generators.



Chapter 2

The Notion of “Randomness”

Examining what we mean by random numbers will help us to understand the
difficulties in generating pseudo-random numbers and interpreting test results.
We will look at how we all intuitively deal with supposedly random sequences,
and touch upon the mathematical treatment of the subject. Regrettably, we will
not be able to comprehensively cover this topic, thus we will focus on the subject
of testing (finite) sequences of PRN.

2.1 Randomness by Intuition

First of all, we want to take a closer look at the intuitive notion of randomness.
For one, we all intuitively assign probabilities to various events we encounter,
from such mundane things like which side a dropped slice of bread will land on,
every-day events like rainfall, the number of red traffic lights encountered, or
friends met in the bus, to explicitly random events like the outcome of a dice or
the weekly lottery.

But how do we come to the conclusion that one of these events is somehow
random ? What are the criteria for that decision ? In some of the example above
the decision is easy as we know about the process which leads to the outcome.
Watching the dice being cast properly is a sure way to convince oneself that the
outcome is indeed truly random. But how do we proceed when we cannot look
behind the scenes, when the sequence of outcomes is the only information we
have got 7

The human mind has remarkable capabilities to spot regularities in a sequence
of events. If it fails to notice anything suspicious it will declare the sequence to
be random.

Let’s test this notion on the most widely used source of random numbers,

17
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the dice. A dice is supposed to select one of the numbers 1,...,6 in a fair and
independent fashion each time it is cast. In the following list we will argue on
the merits of a few possible outcomes.!

{2} If we cast the dice just once, each of the possible outcomes are equally likely.
All sequences of length one are thus equally good.

{2, 4} There is nothing wrong with this sequence, too.

{6, 6} Casting doublets is not uncommon in the real world, thus they are not
reason enough to doubt the fairness of the dice.

{1, 2, 3} A sequence of length 3 is too short to arouse any suspicion, too. Such
simple patterns (runs up, runs down, only even numbers, only odd ones,
only primes, ...) are actually quite likely to occur.

{1, 2, 3, 4, 5, 6, 1} With increasing length it is possible that a more clearly
visible pattern emerges within the numbers. Would you accept such a se-
quence as generated by a real dice 7 As these things still happen every now
and then in real life, the common answer to this question seems to be “Yes,
as long as this doesn’t happen too often.”.

{4, 2, 2, 2, 4, 2, 4} This sequence will give reason to doubt the fairness of the
dice. Whether the perceived skew is reason enough to outright reject the
sequence as random is a tricky question. After all, a real dice will show such
irregularities from time to time, too.

{6, 6, 6, 6, 6, 6, 6, 6} Although theoretical a possible outcome of a dice, this
sequence will probably not be accepted as such.

{6, 3, 2,1, 2,5, 4, 1, 6} At the first glance, this sequence looks quite random,
but closer scrutiny shows that it features alternately even and odd numbers.
As the probability for this to happen purely by chance is pretty small, one
gets suspicious about the “randomness” of the sequence.

{1,3,4,6,5,3,2,1,1,3,4,6,5,5,4,2,1} This one looks inconspicuous, too. But if
you draw the graph of the sequence you will notice a regularity: There are
too many long ascending or descending subsequences. As these long “runs”
should not appear that frequently in random sequences, this one does not
seem to be random.

{1,2,5,4,3,6,6,2,4,1,3,5,5,2,3,4,1,6} What about this sequence ? Can you see
any regularity in it 7 Once again, a casual look will not find anything sus-
picious, the distribution of the numbers seems to be balanced, consecutive

!Imagine a friend casts the dice behind your back and announces the following outcomes.
Would you believe him to have correctly reported the numbers when he announces the following
lists ?
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numbers do not have any special relation and there is nothing wrong with the
runs, too. Actually, the numbers are balanced way too good as all six num-
bers appear before the first one gets repeated. In other words, the sequence
consists of three permutations of {1, ..., 6}. If the equidistribution of the
numbers is so perfect, the randomness of the sequence must be challenged.

{3,2,5,2,1,4,4,6,2,3,4,5,2,5,6,3,3,1,5,4} This sequence has a hidden regular-

ity, too. In previous sequences we have looked for correlations between
consecutive numbers. If we generalize this and take a closer look at num-
bers n steps apart, we have a more versatile tool for finding regularities. It
turns out that a; + a;110 = 7 holds for all values of i. Such a “long range”
correlation should not happen in random sequences.

Did you see the one big fault in this sequence of would-be random sequences ?
We did not notice it because we looked only at single sequences. Can you find it
now 72

Let us summarize the arguments:

o If the sequence has properties we do not expect to be present in random

numbers, we get suspicious.

If we argue about the “randomness” of a given sequence we try to find
reasons for rejecting it as random. There seems to be no way of asserting a
sequence to be random, it is only the absence of arguments to the contrary
that will lead to confidence in the sequence. The proper formulation in
the language of statistics is the following: The null hypothesis is always to
assume the sequence was indeed generated by a random process with well
known statistical properties. As we will see later, it is not possible to reverse
the problem and regard the non-randomness as the null hypothesis.

Longer sequences are easier to judge.

Short sequences are likely to contain some sort of perceived regularity, thus
it is hard to reject such a sequence based on a suspicious pattern. If the
sequence is long enough to check if the pattern continues to appear in it,
one can try to determine if the pattern is part of some systematic fault or
just coincidence.

There are a lot of ways a sequence can be suspicious.

Just when we thought we have found a sequence which does not exhibit
the patterns we have found in all the previous faulty ones, it turns out that
there is a different kind of regularity in it. Somehow this is just like the trick
question for the first natural number without any special properties. If such

2Try summing each sequence up. It should be obvious then.
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a number existed, the very fact would make it special, thus there can be no
such number. We almost get the same feeling when we examine sequences
for their non-conspicuousness. As there are so many ways a sequence can
exhibit a pattern, a complete absence of patterns is just as conspicuous as
any weak regularity.

Furthermore, it is worth pondering if there are not so many patterns that
all sequences will exhibit one. We will take a closer mathematical look at
this question later.

e “Perfect randomness” is an oxymoron.

If the “random” sequence exhibits exactly the expected distribution this
will cause suspicion, too. A random sequence is supposed to deviate from
its distribution. The common measure for this is the variation. A sequence
with a perfect distribution will fail to have the same variation a random
sequence is supposed to have.

As the variation can be viewed as just another test statistic, it, too, should
vary in a certain way. From that point of view, a constant and perfect
variation is just as suspicious as a constant and perfect distribution. This
reasoning leads to the demand that not only the distribution of the numbers
should be as wanted, but also that the empirical higher moments should be
close to the values predicted by probability theory.

2.2 Formalizing the Intuitive Notion

Now that we have examined what we intuitively mean by saying “This sequence
looks random.” we can try to formalize this notion and develop a set of properties
we want to check if we have to judge a sequence and its generating algorithm.
The goal in this formalisation is to be able to delegate the testing to computer
programs. As computers are known to be very bad at spotting patterns, it will
not be an easy undertaking to find an algorithm which does as good as the human
mind. We can only hope that all systematic faults in the sequence will eventually
cause a suspicious behaviour of the sequence in a generic test.

In the following we abandon the dice as the example, and turn to uniformly
distributed numbers in the interval [0, 1].

Distribution:

The first step in testing a sequence is usually to test its distribution charac-
teristics. That is, are the numbers equally spread over [0,1] 7

In order to test the (empirical) distribution one partitions the interval [0, 1]
in sets A; and compares the number of hits in each set to the size (measure)
of that interval.
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In the discrete case this can be done by simply counting how often each
possible value appears in the sequence. If the counts differ significantly, the
distribution property of the sequence is inadequate.

In order to keep the problem manageable in the case of a huge number of
possible outcomes and in the continuous case, the bins (i.e. the A;) used for
counting will cover more than one outcome.

The layout of the partition is a crucial part of the test: If the A; are simple
intervals the test will measure the overall distribution of the sequence. But
the A; could be the union of a set of small intervals, in which case the test
targets irregularities in the fine structure of the sequence.

Once we have finished the counting process we need some mathematically
justified criteria for interpreting the difference between the number of hits in
each A; and the expected count. There are a number of possible algorithms
for this, the most popular of which are the x?-test and the Kolmogorov-
Smirnov test (often abbreviated as KS-test). The former uses a test statistic
based on the difference between expected and actual count in each bin,
whereas the latter compares the empirical distribution function of the counts
to the expected one.

Correlations:

It should be clear that any numbers in a deterministically generated and
thus reproducible sequence are trivially correlated. Therefore it makes no
sense to look for such intricate dependencies like the generation rule in the
sequence. We will restrict our search to much simpler correlations, which
makes additional sense because that will be the only kind of correlations we
can hope to find with the limited capabilities of a computer program. There
are two approaches to this:

Tests for special correlations check if the sequence exhibits a given kind
of regularity. An often used example is the run-test which measures the
frequency of ascending or decreasing parts in the sequences. The distribution
of these runs in random sequences is known, making it possible to judge the
sequence with respect to this type of correlation.

The serial test is a more general way of examining a sequence. It transforms
the problem of testing for correlation to the problem of testing for equidis-
tribution by looking at tuples composed of elements from the sequence. The
size of each tuple is called the dimension s > 2 of the test. Common tests
use either overlapping tuples defined as x,, := (2, Tpi1, - -+, Tpys 1), OF NON-
overlapping tuples defined as x,, := (Tsp, Tsnt1,-- -, Tsnts_1). If there are no
correlations in the original sequence the s-tuples are equidistributed in the
unit cube of dimension s, which can be checked using the techniques outlined
above.
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To illustrate this, let us examine the sequence {1,4,2,6,2,3,4,1,5,3,2,5}
with the serial test of dimension 2.

Overlapping pairs Non-overlapping pairs
6 . 6 °
5—e e 59 °
41— @ ° 41— @
3 ° ° 3 ° °
2+ o o ° 2+
14 . 14 °
T T T T 1 T T T T 1
1 2 3 4 5 6 1 2 3 4 5 6

As you can see, the fact that large and small numbers alternate causes a
significant deviation from the equidistribution of the points.

For a number of generators it is possible to derive analytical bounds for the
deviation from the equidistribution of s-dimensional tuples as measured by
the discrepancy.

If one does not restrict oneself to form tuples out of consecutive numbers, the
resulting test will be able to find more subtle kinds of correlations without
resorting to high dimensions s. While this modification hardly changes the
empirical testing, only in the case of the EICG analytical bounds have been
derived for this generalized serial test.

2.3 Randomness in Mathematical Terms

Now that we have clarified the intuitive understanding of the concept of testing
pseudorandom sequences, we will turn to the mathematical treatment of the
subject. Rather than providing a full scale discussion of the mathematical objects
and formalisms involved, which would exceed the scope of this thesis, we want
to present an introduction targeted at the mathematical layman. Our aim in
this section is to introduce as much of relevant concepts as is necessary to be
able to explain the problems one faces when testing pseudorandom numbers and
comparing PRNG. We refer to [84] for an in-depth discussion.

There is more than one mathematical approach to this topic. The following
list tries to introduce the different viewpoints and gives references for further
reading.

e Number-theoretic approach.

In our context, this branch of mathematics focuses on the equidistribution
of a sequence of numbers.
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Various measures for the quality of the equidistribution were developed over
the years, of all these numbers, the discrepancy is the most common.

Theorems on the equidistribution usually deal with infinite sequences, thus
they are not particularly useful in conjecture with finite (or periodic) se-
quences. For example, equidistribution of a sequence can be defined in
terms of the discrepancy in the following way:

()32, equidistributed <= A}im Dy(zy,...,zn) =0
—00

See [50, 69, 71] for further reading.

¢ Kolmogorov complexity and information theory.

This approach targets the complexity and information content of the se-
quence in question. One of the possible measurements is the minimal size of
a computer a program (or a Turing machine) which can reproduce the se-
quence. In the optimal case, the program code will have to explicitly contain
the sequence in order to print it. Any possible shortcuts the program can use
(like exploiting dependencies) will be a measure for the lack of randomness
of the sequence.

Since all our sequences are generated by short programs, they a-priori fail
this test. Thus we will not consider this notion in our tests.

A similar approach is to focus on the amount of information contained in
the sequence. If the entropy is high enough, we will accept the sequence
as a good approximation of random numbers. Another way to express this
notion is to state that the sequence is not compressible.

Testing whether a sequence is compressible is not easy since all common im-
plementations cannot achieve the theoretically possible compression. Only
really bad PRN can be eliminated with programs like gzip or compress. Ex-
tending the capabilities of these programs (for example enlarging the range
of the pattern search in gzip) might be a way to get a workable test. As far
as we know, nobody has tried this yet.

For larger sequences, the distinction between these ideas start to blur, as
the size of the information needed to transform one representation into the
other becomes irrelevant.

See Lagarias [51], Ming/Vitany [66] and Chaitin [5].

e Cryptographic considerations.

A sequence of PRN can be used to construct a stream cipher. If “true
random” numbers are used, this cipher is called the one-time pad and is
provably secure. So it is natural to ask what properties the PRN must have
to achieve a good level of security.
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According to Rueppel [75] there are several approaches to the construction
of a secure stream cipher: The information-theoretic approach considers the
possibility in principle to derive the seed (i.e. the key) from an observation
of the PRN, the system-theoretic approach tries to make breaking the cipher
at least as hard as solving known “hard” problems like factoring or the
discrete logarithm. The complexity-theoretic approach tries to make sure
that the amount of work needed to break the cipher is of non-polynomial
complexity, randomized stream ciphers increase the magnitude of the code-
breaker’s problem by utilizing a public pool of random numbers.

See [76, 75] for a discussion of these ideas.

e Statistical approach.

The basic idea of statistical testing can be summarized as follows: From
a sample of supposedly random numbers a function called test statistic is
calculated. As the distribution of this function is known for the case of real
random numbers (otherwise the test does not make sense), one can determine
which kind of results are extremely unlikely to occur. Typically this is
formulated as intervals in the domain of the test statistic. These intervals
(usually called critical region) are selected in a way that the probability that
real random numbers lead to a test statistic there is smaller than the level of
significance (usually 0.05, 0.01 or 0.005). If now for a sample of PRNG the
test statistic falls into the critical region the common inference is to reject
the sample.

See [49, 4, 53] for further reading.

All common tests rely on the idea of statistical testing. In the following we
will try to elaborate on the motivation behind these tests, their mathematical
foundation, their power and limitations, and how to interpret their results.

2.3.1 Random Variables and Probability

First of all, let us take a closer look at what we want to simulate. Our tar-
get are sequences of random numbers, which are realisations of a sequence of
independent, uniformly distributed random variables.

Random variables (RVs) are one of the main building blocks in probability
theory. They are used to assign each possible outcome (or, to be more exact, each
reasonable set of outcomes) of an experiment a real number which is interpreted
as the probability of this outcome.

But strictly speaking, the mathematical concept of RVs does not explicitly
reflect our intuitive ideas about randomness of events, on the contrary: RVs are
just simple, ordinary functions. One is tempted to ascribe mythical powers to
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RVs, like the ability to randomly select one of a set of possible events. This is
not true, they only describe certain aspects of an idealized system which flips the
metaphorical coin.

So where is the link between the mathematical world of RVs and the real life
world of roulette tables 7 Unfortunately there is none for single events. Even if
a RV does in fact model a real world event, hardly any conclusions can be made
about the outcome of the next single event. Even such unlikely events as winning
the jackpot in a lottery do happen every now and then, and most people are not
deterred by the extremely bad odds from playing every week. On the other hand
some people are scared of travelling by plane because the probability of a safe
flight is marginally less than one. In both cases our experience tells us that the
probability alone cannot predict the next outcome.

But even such pretty definite sounding statements like “this event will occur
with probability 17 cannot guarantee the outcome of an event. More insight into
measure theory will tell us why such strange things can happen. For example, the
probability that the next realisation of an U([0, 1])-distributed random variable
will be a rational number is zero. This does not stop the real world from delivering
one of the infinite number of rational numbers, thus rendering the statement “This
experiment will only return irrational numbers” incorrect.

We have seen that a RV cannot make concrete statements about a single
outcome, so we might ask what statements about outcomes it can make at all.
One way to formulate the meaning of probability is the following: [84, p. 10]

The probability assigned to an event expresses the expected average rate
of occurrences of the event in an unlinked sequence of experiments.

We need to elaborate on two aspects of this definition as they are not as strict
and unambiguous as commonly demanded from a good definition.

First, what do we mean by “expected” 7 That seems to indicate that proba-
bility cannot be an intrinsic property on an event. There is no mathematically
satisfying way to assign a probability to an event based on a (finite?®) set of mea-
surements, as it is extremely unlikely that another set of experiments will result
in the same value. The common way out is to make assumptions about some
parts of the experiment, like the Laplace assumption which assigns the same
probability to all underlying events. These assumptions are based on a men-
tal model of that event which includes a theory on how often something should
occur. It is the mathematician, the physicist or just some observer who forms
a mental model based on experiences or consideration. Such simplifying mental
models of the real world are ubiquitous as they provide an essential simplification
in the way we view the world. Other such simplifications include the concept of

3Tt is possible to prove convergence as the number of measurements increases. [84, p. 20]
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rigid bodies, fluids, or gases which are abstractions of “a bunch of molecules tied
together by various forces”. Just as the laws of leverage rely in their formulation
on the concept of forces and of rigid bodies the laws of chance depend on the
concept of probability assigned to events.

The other critical word in the above definition is “unlinked”. By unliked we
mean that the outcome of one experiment does not influence the outcome of
any subsequent experiment. Common examples for unlinked experiments include
drawing balls from an urn (with putting them back in !), casting a dice, or the
roulette wheel. Please note that in all these examples there is a connection
between two successive experiments as the first one does influences the second.
It is a conscious decision by the observer that the re-shuffling of the balls in the
urn caused by the first experiment does not affect the probability in the second
one. This sounds almost like a paradox, as the re-shuffling surely does effect the
outcome. But remember, just above we noted that the probability of an event
does not determine the next outcome at all, so there is not contradiction here.

We have to be careful with sequences of PRN and their relation to independent
random variables, too. The concept of independence is based on the concept of
distributions. As we cannot ascribe distributions to numbers, we cannot use the
term “independence” for sequences of PRN. We will use the word correlations to
refer to any unwanted relationship between elements in the sequence.

2.3.2 Testing

As described above, the theory of random variables and probability tries to model
aspects of the physical world. The fundamental principles of science demand
justification in form of experiments for all such theories. For typical physical
models such experiments are usually easy to set up and follow the same scheme
of comparing an expected (calculated) result to the measurements of the actual
physical event. If they differ more than inaccuracies in the measurements would
allow, the theory is proven to be wrong. Philosophy of Science tells us that it is
impossible to positively prove a theory.

Do the same principles hold for conjectures in the field of probability, too 7
Unfortunately, they do not. Let us illustrate this with an example:

As a theory to test we might take the assumption that a given coin is fair,
meaning that the probability it lands with the heads side up is 1/2. How might
an experiment designed to test this hypothesis look like ? Surely it will involve
throwing the coin a number of times and then comparing the result to the predic-
tion. Calculating the prediction based on the theory is simple, unfortunately the
prediction assigns each possible outcome a positive probability. Thus regardless
of the behaviour of the coin the result is consistent with the theory, as we cannot
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rule out the measured result. If we have no way to reject a theory, we have to
find a different set of criteria according to which we can justify theories.

The common way out is statistical testing. It should be clear that statistical
testing can never be as strict as testing in other areas. It is a heuristic approach
to the problem. As such, it relies on the good judgement of the tester and is not
objective. But before we elaborate on the shortcomings of statistical testing let
us summarize the basic procedure again, already using the test for randomness
as the example.

1. The first step is to formulate the hypotheses. In our case the null hypothesis
H, states that the source of our pseudorandom numbers can be modeled as
a RV with distribution U([0, 1]).

The alternative hypothesis H, states that Hy is not true.

2. We define a function called test statistic which maps the result of an ex-
periment into some mathematical domain. Typical test statistics for testing
uniform PRN are the number of runs, the discrepancy, the y?-statistic, . ...
See [49, 53, 69, 65] for further test statistics.

3. A level of significance « is selected which defines how strict the test will be
and how much leeway we will accept for the PRN. Common values for a are
0.05 or 0.01.

4. Using the (hopefully) known distribution of the test statistic for the case of
Hy being true, we determine the critical region C' which is the area in the
domain of the test statistic which covers its extreme, unlikely values. The
value for « is used to quantify what we mean by “extreme” and “unlikely”
in such a way that P(test statistic € C'| Hp) < .

5. Now the pseudorandom numbers are generated and are used to to calculate
the test statistic. If the value for the test statistic falls into C' we say that
the PRN have failed the test and we have reason to believe that H; is true,
otherwise the test is passed and we have no reason to reject H.

This is the basic outline of all common empirical tests. We will discuss a few
tests and their results later in this thesis. So what are the weak spots in this
method of testing pseudorandom numbers ?

e PRN are not experiments.

First of all, when testing sequences of numbers generated by a PRNG basic
premises of statistical testing are violated.

The theory behind statistical testing assumes that we actually deal with
random events. It is thus a circular argument to conclude from the result of
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such a test that the numbers in question are “random”. Only their statistical
properties that are subject to the test, not the basic premise that the concept
of random variables is a valid model for that experiment.

It is therefore not correct to speak of “statistical testing” with respect to
PRN testing. A more appropriate term is “numerical testing” as the test
examines only a numerical property of a fized set of numbers.

The only “statistical” part of the test is the calculation what numerical val-
ues for the test statistic are considered to be good and which are considered
to be bad.

The test statistic is arbitrary.

The test statistic determines which aspect of the numbers we want to test.
Dividing [0, 1] into the intervals [%, %[ for 0 < i < n, counting the hits in
each interval, and then calculating the y? statistic is a straight-forward test
statistic which aims the the overall equidistribution of the pseudorandom
numbers in [0, 1[. The choice of the bins (in this case intervals) seems to be

a natural one.

But what bins should we use to measure the finer aspects of equidistribu-
tion 7 We could use just a large value for n and keep the intervals, but
that would cause a problem with the validity of the x? approximation as
the number of hits per bins decreases. An other option is to use something
like this: Define bin i as {x € [0,1[: |[z-k] =i (mod n)} for some suitable
values for £ and n. Then the bins are no longer simple intervals, but sets of
intervals that are spread over the unity interval. The value for £ determines
the width of each component interval.

Is there a natural choice for £ 7 We do not think so. But the choice
can be important as the result of the test depends on it. Consider for
example the set of numbers defined by {i/m | 0 < i < m} which is perfectly
equidistributed in[0, 1[. Fro certain relations between k, n and m, like k |
m-n, then the test will result in extremely bad x? statistics. As an example,
consider the case &k = n - m where all numbers i/m fall into the same bin.
For other values of k, this set of PRN will exhibit no weakness in this test.

We have seen that even such simple changes to the test statistic, like modi-
fying the width of stripes, can completely change the result of the test. One
can imagine that completely different layouts of bins will lead to a great
variance in the test results, too. Thus we have to keep in mind that the
choice of the test statistic, and thus to some extent the result of the test, is
arbitrary.

One consequence of this fact is that we cannot declare one sequence of PRN
to be better than a second one just because we found a test where the
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first one rates better, as a slightly modified test might produce exactly the
opposite result.

e Good PRN have to fail some tests.

What we strive for are numbers who behave in most respects like realisations
of U([0, 1])-distributed RVs, so it is a natural question how such ideal random
numbers will perform in our statistical test. The answer to this is quite
simple: If we conduct a test at the significance level o then a sequence of
random numbers will fail the test with probability a.. If we have set o = 0.01
then we can expect a failure about once every hundred tries.

As PRN should model all aspects of real random numbers, they should fail
statistical tests at about the same rate.*

It is therefore not advisable to outright reject a sequence of PRN
based on its failure in single tests.

e The variance of the test statistic can be important, too.

Classic statistical tests examine if the test statistic does not deviate from its
expected value too much. If we are only interested in the expected outcome
of a similar simulation problem, such one-level statistical tests are all we
need in order to be confident about the accuracy of the simulation.

On the other hand we might be interested in the distribution of the simula-
tion’s outcome. For this goal hitting the expected value is not enough, the
variance of the result is now important, too. Thus we will demand the same
behaviour from the test statistic, too.

Let us illustrate this principle with an example. We want to test the well
known strategy of doubling the ante in a game of roulette. It is supposed
to guarantee winning the initial ante and works like this: If we do not win
in the first round (and therefore win twice the ante) the ante is doubled for
the next round. If this round is won, we get back four times the initial ante
while we invested three times the initial ante resulting in a net win of one
ante. In case of bad luck we double the ante again hoping for eight times the
ante for an investment of seven. As we hope that we will finally win before
our capital is drained a net win seems to be certain.

In order to simulate this we need random numbers to determine whether we
will win the current bet. The probabilities are 18/37 for winning and 19/37
for losing each round, respectively. It seems to be natural to use the lengths
of runs as a test statistic to test our source of PRN for its fitness to simulate
a real roulette table. The probability that the maximal run length in 500
tries is greater than 15, is smaller than all usual values for «, so according to

4The number of failed tests could be viewed as a test statistic, too. Therefore the sequence
of PRN which passes all common level-1 tests will surely fail this meta-test.
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the corresponding statistical test we should reject all sequences where such
runs do occur.”

When we now run the simulation with these prescreened sequences we will
never ever experience a loss as long as we have enough money for 15 steps
of doubling the ante. Thus we should conclude that the strategy works. As
we know, this is not true. So what went wrong with our simulation ?

The statistical test considered it equally important whether the sequence in
question was “well-behaved” or not, whereas the simulation assigned com-
pletely different weights to those cases. Thus the area that the test consid-
ered to be insignificant (smaller than «/) played a major role in the simulation
(more than 1/2).

There are some other cases of simulations where we are not so much inter-
ested in the average case, but in the extreme ones. Consider for example
all those safety measures in power plants or other machinery where a rare
sequence of occurrences might lead to catastrophic results. When simulating
these security systems one must not a priori exclude unusual sequences.

Please note that the distinction between level-1 and level-2 tests (tests which
test the distribution of the results of a level-1 test) is arbitrary. The test
statistic of a level-2 test is just another function of the underlying set of
PRN;, too.

Statistical tests cannot be used to objectively rate PRIN.

One might be tempted to use a set of statistical test to once and for all declare
one generator superior to another generator. Intuitively this makes sense,
especially when comparing two generators of the same type. A common use
for this heuristic is the selection of optimal parameters for the LCG based
on its lattice structure [28, 72].

But is this judgement mathematically justified ? Leeb explains in [58] that
such judgement is not justified as all possible sequences of PRN of a given
finite length pass exactly the same number of statistical tests.

In order be able to use statistical tests as a criteria for the selection of PRNG
the user has to declare which properties he considers important. With this
knowledge it is possible to weight the tests and therefore select a suitable
generator for this specific application.

Statistical tests are simulations with a known result.
Both statistical tests and simulations use a set of PRN to perform a more

or less elaborate calculation.

test statistic
simulation result

calculation(PRN) = {

>See [8, p.130] for bounds on these probabilities.
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In a statistical test we draw a conclusion from the right side to left: Based
on the difference between expected and calculated value we judge the quality
of the PRN.

A simulation operates the other way round. Based on the (hopefully) known
quality of the PRN we hope that the simulation result is correct.

While generic statistical tests can be used for this reasoning, one can increase
their value by designing the tests to closely model the simulation. Thus the
tests can target exactly those properties in the PRN which will be significant
in their application.

2.3.3 Interpreting Test Results

In order to conclude this chapter on the notion of randomness let us recapitulate
what we know about testing a generator, and how we should proceed when we
face the task of selecting a generator for a particular simulation problem.

1. Statistical testing cannot guarantee that the tested generator will perform
equally well in a real world simulation. Ounly if we are able to determine
which aspects of randomness are important for the simulation and specif-
ically test our source of pseudorandom numbers for these aspects, we can
mathematically justify our confidence in the validity of the simulation [58].

2. Empirical testing should be supplemented by analytical investigations into
the quality of the generator. Such calculations are often essential to guaran-
tee basic properties like period length, as well as to provide means to select
suitable parameters to avoid pitfalls like a degenerated lattice in the case of
linear generators.

Furthermore, analytical investigations can yield some insight in the overall
structure of a generator’s output which can be compared to the properties
required in the simulation. The lattice structure of the LCG might be ac-
tually useful in QQuasi-Monte Carlo integration whereas it can be harmful in
geometric problems, e.g. the nearest-pair test [14, 53].

3. Level-one tests target only the expected value of the test statistic. Often
this is not enough, making it necessary to test the distribution of the test
statistic. Such two-level tests guarantee that the proper irregularities are
present in the PRN, too. Whether we should strive for such variance in the
generator is up to its final application.

4. Rejecting a generator is rejecting one facet of randomness. It is self-deception
to claim that one rejects a generator based on its lack of randomness. One
can only state that one does not want that particular aspect of randomness.
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Sequences we will intuitively classify as non-random may be important as
input for the simulation in order to get correct results.

. As we have seen before, the results of a test can be extremely sensitive to its

parameters. Thus statements like “generator x passes the y-test” have little
relevance unless the exact parameters used in the test and in the generator
are published, too.

. The result of a single test is not enough to assess the quality of generator.

Only a battery of tests and comparisons to the performance of other gener-
ators in the same test suite enable the mathematician to pass judgement on
a generator.



Chapter 3

Theoretical Results

In this chapter we will discuss analytically derived properties of the explicit in-
versive congruential generator (EICG). We will use results obtained for the LCG
to serve as a reference as the LCG is the most commonly used generator. Let us
start by repeating the definition of the EICG:

Let p be a (large) prime and a,b,ng € Z,. The explicit inversive
congruential generator (abbreviated as “EICG”) with parameters
p,a,b, and ny defines a sequence (Y, )n>o0 in Ly, by

Yn=a-(ng+n)+b (n>0) (3.1)
and a sequence (xy,)n>0 of pseudorandom numbers in [0, 1] by

Y
p

(n > 0).

Tp

Please remember that we perform all calculations except the final scaling in
the finite field Z, = {0,1,2,...,p — 1}. Z; will denote the non-zero elements of
Ly, that is Zy = {1,2,3,...,p — 1}. The over-line @ denotes the multiplicative
inversion in Z, for all non-zero elements a € Z;. With the special case 0 = 0
added, z — T is a bijective function from Z, onto Z,. Furthermore, we have
T =z and T = 2P72 for all z € Z,. The latter identity is due to Fermat’s Little
Theorem.

Note that from the explicit definition of the sequence (y,),>o We can easily
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derive a recursive description:

Yo = a-ng+b

Un+s1 = Tata (n>0) 52

In order to achieve maximal period length p, the parameters a,b, and ny can

be freely chosen from Z, as long as p is prime and a # 0. To see this, consider

the function f(n) := a- (ny + n) 4+ b which is composed of bijective functions in

Z,, and thus is bijective, too. As n+p =n in Z, we have f(n+p) = f(p) for all
n, thus the sequence (y,,)5°, is purely periodic with period length p.

We will only consider full period generators, that is a # 0.

We will write eicg(p, a, b, ng) to denote the output of a particular instance of the
EICG method. Unlike Leeb [58, p. 89] we mean the whole infinite (but periodic)
sequence, and not just the first p numbers. This way, no special treatment of
wrap-arounds is needed when considering subsequences.

3.1 Relations between different EICG

The choice of parameters is simple for an EICG, but not all choices will lead to
completely different pseudorandom numbers. In this section we will examine the
relations between EICGs with the same modulus, but different parameters a, b,
and ng.

These results are helpful for the implementation, as one can eliminate an
addition modulo p, as well as to the theoretical investigation as they provide a
very elegant way to describe sub-streams. We will elaborate on this idea which
is due to Niederreiter [70, p. 5] later on.

First of all, let us make a rather trivial observation on the role of the parameter
ng.

Observation 3.1 Let (y,)n>0 = eicg(p, a,b,0). Then we can write the sequence
eicg(p, a,b,ng) as (Yn)n>ne- In other words, the second sequence is first one shifted
by ng.

Proof: This relation follows from the fact that n and ny appear only as their

sum n + ng in the definition of the EICG. [

The following observation is taken from Leeb [58, p. 89]; it states that one of
the parameters is redundant.
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Observation 3.2 Let p be prime and a € Z, be fivzed. Then we have for all
b,ng € Zp

eicg(p, a,b,0) = eicg(p,a,0,ab)
eicg(p, a, 07 nO) = eicg(p, a, any, 0)

and

eicg(p, a, ba ’ﬂo) = eicg(p, a, 07 ng + ab) = eicg(pa a,ang + ba 0) (35)

Proof: We base the proof on the recursive definition of the EICG. As the
recursion does only depend on a, which is constant, it is sufficient to show that
the yy of these generators are equal. In the first two cases we have

a-0+b = y = a-ab+0
a-ng+0 = yo = a-0+any,

and the third equality translates to

Yo = a-ng+b = a-(ng+ab) = a-0+ (ang+0).

The third equality can be used to rewrite any EICG as an EICG with b = 0,
but a different value for ny. Thus the generating formula can always be rewritten
as

Yo :=a- (nf+n) (n>0)

which saves one addition. The addition n{ + n can be implemented by simply
incrementing the previous value modulo p, thus we need to perform only one
increment, one multiplication, one inversion, and one division to generate the
next pseudorandom number.

There is an obvious connection between eicg(p, a, b, kng) and eicg(p, ka, b, ny),
too:!

Observation 3.3 Let p be prime, a,k € Zy, and b € Z,.
The sequence eicg(p, ka,b,ng) can be obtained by selecting every k-th element
from the sequence eicg(p, a,b, kny).

Proof: The sequence generated by taking every k-th element in the sequence
eicg(p, a, b, kng) = (Yn)n>o can be written as (Yxn)n>0. We have

Y =a- (kng+n)+b

!This is a generalisation of Lemma 5.3 in [58].
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and thus
Ykn = a-(kng+nk)+0b
= ak-(no+n)+b
= /Un
where (vy,),>0 = eicg(p, ka, b, ng). u

These three observations give us the tools to show that all maximal period
EICGs can be derived from the “mother-EICG” eicg(p, 1,0,0) in the following
way:

e Start with the sequence eicg(p, 1,0,0).
e Shift the sequence by a(ny + @b). The result is eicg(p, 1,0, a(ng + ab)).

e Take every ath element of that sequence. According to Observation 3.3 we
get eicg(p, a, 0, ng + ab).

e According to Observation 3.2 this sequence is the same as eicg(p, a, b, ny).

Can these insights help us in the theoretical investigation on how samples
from an EICG behave under various tests 7 Yes, they provide a very convenient
and elegant formalism to describe subsequences and various kinds of s-tuples
generated from the stream of pseudorandom numbers. With this formalism, the
proofs of discrepancy estimates and non-linear properties are very concise.

First of all, we do not need to bother with the parameter ny in the theoretical
investigation as we can always rewrite the EICG to one with ng = 0.

Second, any property of a sequence of EICG numbers, which is valid indepen-
dently of the parameters used, is immediately valid for subsequences consisting
of every k-th element. One direct consequence of this is, that once we can prove
that pairs of consecutive numbers are uncorrelated for all valid parameters, we
can rule out the possibility of long-range correlations at critical distances. See
[10, 19] for a discussion of such problems inherent to the LCG.

The third gain, due to Niederreiter [70], is to be able to write almost arbitrary
s-tuples formed out of the stream of EICG numbers as parallel streams. Such
s-tuples as usually used to examine the correlation between successive numbers.
For example, the overlapping serial test (see page 21) tests the equidistribution
of the vectors

Yn = (yTLJ Yn+1s-- -5 yn-i-s—l) € Z; (36)
for n = 0,1,...,p — 1 in order to test the PRN (y;);>¢ for correlations. If we

pick the first coordinate of each vector we get the original sequence. Picking
always the second results in the original sequence shifted by one. According to
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the above equivalences we can write this shifted sequence as an EICG with the
same parameter a, ng = 0, and a different b. Thus we have

yo = (U092, 0 € 2 (3.7)
where (y?),>¢ is the sequence generated by the EICG eicg(p, a, a(i — 1) + b,0).
The obvious generalisation is to allow almost arbitrary EICGs eicg(p, a;, b;, 0) for
each coordinate.

In the following, we will prove all statements on the behaviour of s-tuples in
terms of these parallel streams. For that, we will need to restrict the possible
values for the a; and b; in order to avoid certain special cases like a; = ay A
by = by. As we will see later in the various proofs, we need the condition @;b; #
a;b; for all 7 # j. Thus we have the following definition:

Definition 3.1 (Parallel Streams) Let p be prime, 1 < s < p, anday,...,as €
Ly, b, ..., bs € Zy such that ajby, . .., a5bs € Zy, are distinct. Then we put

YD = ain + b; fori=1,2,...,s andn >0, (3.8)
and define a sequence (y,)n>0 in the s-dimensional affine space over Z, by putting

Yn = (yle),y,(f), . ,yff)) €z,

An interesting special case of parallel streams, which is more general than the
overlapping s-tuples considered above, can be obtained as follows. Choose an
integer m > 1 with ged(m,p) = 1 and integers 0 < n; < ny < ... < ng < p and
put

Yn = Wmntnis- -+ Ymnin,) € Zy, for n >0,

where the y,, are as in (3.1). This sequence of points in Z; can be written in
terms of parallel streams according to Definition 3.1 by putting a; = am and
b =an; + b for 1 <1 < s. It is easy to show that the @;b; are distinct, thus all
results concerning parallel streams are valid for this general method of composing
s-tuples, too.

The non-overlapping tuples y, := (Ysn, Ysni1s - - -» Ysnss—1) are covered by the
concept of parallel streams, too. To see this, set a; = sa and b; = a(i — 1) + b for
1=1,...,s.

3.2 Structural Properties

The best known structural property of any pseudorandom number generator is
the lattice structure of the LCG. Coveyou/MacPherson [9] and Marsaglia [64]
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noted first that s-tuples formed from successive LCG-numbers form a lattice
in the s-dimensional cube. Figure 3.1 depicts the lattice formed by plotting
overlapping 2-tuples for the full period of two “toy” generators. “Production
quality” generators exhibit the same structure, you just have to zoom into the
image to see the pattern.

L TV TN 7 I S |
05 [ el — 05 F S R
o L 1 oL i
| | | | l |
0 0.5 1 0 05 .

Figure 3.1: Overlapping pairs from lcg(256,69,5,1) and lcg(256,53,1,1)

The shape of the lattice depends very strongly on the parameters ¢ and b of
the LCG. Thus various measurements on the coarseness of the lattice are used
to select suitable parameters a and b. That way, a weakness of the LCG turns
into a strength, as one can guarantee a well-behaved lattice for low dimensions
as long as the parameters are chosen well enough.

Does the EICG exhibit a similar structure ? Figure 3.2 suggests that the
EICG does not possess this linear property, although one can see some other
regularities. In fact, one can prove a very stringent non-linearity property for
s-tuples taken from an EICG. The theorem describing this is due to Niederreiter
[70].

1F y - 1+ _—
05 I - ..... . '. . . ,.. . , ..-. . .:‘.. _ 05 L ..-. ) . .. . ..- .. L . . ] I_... _—
L]
0 - 0 ' -
| | | | | |
0 0.5 1 0 0.5 1

Figure 3.2: Overlapping pairs from eicg(257,6,1,0) and eicg(257,30,1,0)
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Theorem 3.1 Let y, = (yg), @ ..., ﬁf)) as in Definition 3.1, then every hy-
perplane in Z, contains at most s of the points y,, n = 0,1,...,p — 1, with

yM ooyl oL 0. If the hyperplane passes through the origin of L, then it comn-
tains at most s — 1 of these points y,.

Proof: All calculations in this proof are performed in the finite field Z,.
Furthermore, remember that according to Definition 3.1, the @;b; are distinct.

A hyperplane H.,, in Z; is uniquely defined by a vector ¢ = (c1,...,¢5) €
Z3 \ {0} and a scalar ¢y € Zyp as Hee, = {x € Z; | x- ¢ = ¢p}. We restrict our
search for points on a hyperplane n € W := Z, \ {—aib, ..., —a;bs}. Thus for
n € W we have according to (3.8) y,(}), e ,y,(f> # 0, therefore we can rewrite the
hyperplane equation for y,, as

s
¢j _
Z 7[) = (g.
j=1 a;mn + '

By clearing denominators, we see that n is a root of the polynomial

hz) = co [] (@iz + b;) ZCJH (aix + b;)
=1 :;éj
If ¢y # 0, then h is a nonzero?® polynomial of degree s over Z,. Since such a

polynomial has at most s roots in Z,, the hyperplane H. ., contains at most s of
the y, with n € {0,1,...,p— 1} \ {—aiby, ..., —a;bs}.

If ¢ =0, that is 0 € Hc,, we get

ZC]H a;x + b;),

z#]

whose degree is at most s—1. It remains to show that A is not the zero polynomial.
As c is not the zero vector, one of its coordinates is nonzero. For ¢; # 0 we have

h(—a_kbk) = Ck H (—aia_kbk + bz)
= o [] @i(@b; — axby)
ik
# 0,
because ¢ is the chosen nonzero coordinate, and the a; as well as the (a;b; — axby)

are nonzero according to the conditions of the theorem. As we have found h(x) #
0 for some z, h cannot be the zero polynomial. [

Remember: a; #0 fori=1,...,s.
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This theorem proves that s-tuples taken from an EICG do not form any linear
structure such as a lattice. But that does not mean that no other kind of pattern
emerges in plots of pairs of consecutive® numbers. For example, consider Figure
3.3, where one can see a hyperbola-like structure in the upper left and lower right
corner. Eichenauer-Herrmann and Wegenkittl are currently preparing a paper
discussing these properties of the EICG.

T AL L P

| | |
0 0.5 1

Figure 3.3: Overlapping pairs from eicg(1163,1,0,0)

All the plots so far contained all the overlapping pairs available from the full
period of the generator. This way, the underlying structure of the generator is
perfectly visible. But usually one does not utilize the full period of any generator;
a common rule of thumb is to use not more than the square root of the period.
Thus the LCG will never be able to build up the full lattice and the EICG
will contain only a few points on hyperbola. Figure 3.4 depicts the lattice of
leg(65536,325,1,1), the first image shows the full lattice in a zoomed view, the
second one contains only 256 points, which corresponds to the square root of all
possible points.

3Note that according to Observation 3.3 any step corresponds to a single step for a different
EICG, thus we can restrict our search for patterns to pairs of consecutive numbers.
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0.1 ..

0.05 -

0 0.05 0.1 0 0.5 1

Figure 3.4: Overlapping pairs from lcg(65536,325,1,1)

These figures clearly demonstrate that any regularities a generator develops
over the full period are not necessarily present when only a fraction of the avail-
able numbers is used. The recommendation never to exhaust the full period
can be further justified by the following argument: The PRNG is supposed to
simulates drawing numbers from an urn with putting the numbers back into the
urn, but in fact the typical PRNG empties the imaginary urn before it puts all
numbers back when the period is exhausted. The difference between “drawing
with replacement” and “drawing without replacement” is small as long as only a
fraction of all numbers are drawn from the urn.

3.3 Correlation Analysis

The discrepancy is a widely used and well studied measure for the equidistribution
of a set of points. In this section we will try to give a motivated definition,

some theoretical background, and summarize all published results concerning the
EICG.

3.3.1 Background

There are at least three approaches to the notion of discrepancy, one stems from
statistics, one from geometric reasoning, and one from numerical integration. We
will use the latter. An extensive introduction to discrepancy can be found in
Niederreiter [69, Chapter 2].

We will use the following setting: The closed s-dimensional unit cube [* =
[0, 1]° will be the integration domain in which we will try to integrate the function
f by using the quasi-Monte Carlo integration

1 N
/ flu)du ~ ~ 2 £ (%) (3.9)

I
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with x1,...,xy € I°. Ideally, we hope that the approximation converges to the
integral as the number of points increases. If this is the case for a reasonable
class of functions, say, for all continuous f on I*, then we call the (infinite) se-
quence (X, Xy, . ..) uniformly distributed in I*. One can show that this definition
of “uniformly distributed” is quite independent of the class of functions; using
the Riemann-integrable functions yields the same test as using the characteristic
functions of a wvery simple set of intervals.

Whereas the limit of the integration error can be used as a qualitative mea-
sure for the distribution properties of an (infinite) sequence of points, one can
use the integration error in the finite case as a quantitative measurement of the
equidistribution of the finite sequence (x,)2_;.

In order to get a workable measurement, we have to state which family of func-
tions f we consider for the integration, and how we condense all the integration-
errors for each function from the family into one single number.

The general concept of discrepancy uses the set of characteristic functions of
axis-parallel cubes in I° := [0, 1[* as the functions to integrate and the supremum
as the condensing function. Formally, we can write this in the following way:

If Q = (x,)_, is a finite sequence in I*, and B an arbitrary subset of ¥, then
we can express the quasi-Monte Carlo integration of the characteristic function®
cp in terms of the number of x; in B,

AB;Q) = #{n € {1,...,N} | x, € B},

as
1 N

1
/F en(wdux + Y en(x) = - AB; Q).

n=1

Based on this, the error when integrating cp can be written as ‘@ — As(B)],

where \;(B) is the s-dimensional volume® of B. Thus we can write the general
notion of the discrepancy of a finite sequence 2 of points in I® for an arbitrary®
family B of sets as

A(B,Q)

Dy (B; ) = sup N

BeB

- )\S(B)‘ (3.10)

From this general definition we can derive the definition of the two most im-
portant incarnations of discrepancy as follows:

Definition 3.2 The star discrepancy Dy () = Dy (x1,...xx) of the finite
sequence ) is defined by Dy (Q2) := Dy(J*;Q), where J* is the family of all
subintervals of I* of the form TT;_; [0, u;].

tep(x) is defined as 1 for x € B and 0 for x ¢ B.

>To be exact, As(B) denotes the s-dimensional Lebesgue-measure of B.
6B should be a non-empty family of Lebesgue-measurable subsets of I°.
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Definition 3.3 The (extreme) discrepancy Dy() = Dy(X1,...xy) of the
finite sequence Q) is defined by Dy () := Dy (J; ), where J is the family of all
subintervals of I* of the form TI;_, [u;, vi[.

While Dy and Dy, are the classical figures for measuring the equidistribution,
they are far from being the only ones. Interesting variations of the basic idea
are the usotropic discrepancy, which uses the family of convex sets instead of
axis-parallel cubes, or the L?-discrepancy, which uses the 2-norm instead of the
supremum. Especially the L2-discrepancy has received a lot of attention recently
as it is suitable for empirical testing [37] and has a number of interesting theoret-
ical properties [79, 61]. Another measurement worth mentioning is the weighted
spectral test [39, 45, 43, 40, 46].

Let us quickly state a few general results concerning discrepancy. They will
help us to interpret the main results of this chapter. We once again refer to
Niederreiter [69, p. 14ff, p. 166ff] for proofs and further references.

Proposition 3.1 For all finite sequences Q0 consisting of N points in I* we have
Dy(9) < Dx(©) < 2Dy ()

and
0 < Dy(Q) < Dn(Q) < 1.

In dimension one, that is s = 1, it is possible to express the discrepancy as a
relatively simple formula operating on the ordered list of points.

Proposition 3.2 If0 <z, <y < ... <y <1, then

2n—1‘

Dy (zy,...,xyN) Tp 5N

N T
and
o= s (5 -2) - ()
NT1,..., TN —N IISI}Z&SXN N Tn lgzlgnN N T | -

From these formulae, as well as the well known fact that sorting is of com-
plexity O(Nlog N), it is easy to see that one can calculate the discrepancy in
the one-dimensional case in O(N log N) + O(N) steps. Using a memory versus
speed tradeoff [33] it is possible to get the complexity down to O(N). In higher
dimensions s calculating the discrepancy is of complexity O(N¥), making any
reasonable empirical testing computationally infeasible. Probabilistic algorithms
[88] can be employed to calculate tight upper bounds for a given €.

What do we know about the behaviour of Dy with increasing N 7 If the
sequence of point is indeed uniformly distributed in /°, then we know that
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limy oo Dy = 0. For a sequence of uniformly distributed random points we
know that limy_,o, Dy = 0 with probability one. But in order to use the discrep-
ancy as a figure of merit for finite sequences, we need to know exactly how Dy
converges for random sequences. Luckily, the following result (due to Kiefer [48])
provides us with the benchmark according to which we can judge the discrepancy
bounds derived for PRN.

Proposition 3.3 (Law of the iterated logarithm) Let z,,2y,23,... be a se-
quences of uniformly distributed random points in I°, then we have
— 2N)Y2D3 (2, . ..
th%oo( ) v(z1, ,ZN)
(loglog N)1/2

=1 A*—a.e,
where A\* is the Lebesque measure on the space of all infinite sequences in I°.

The discrepancy is per definition an upper bound for the quasi-Monte Carlo
integration error for a very limited class of functions, namely the characteristic
functions of axis-parallel cubes. A classic result by Hlawka uses the discrepancy
to derive an error-bound for a large class of functions.

Proposition 3.4 (Koksma-Hlawka inequality [69]) If f has bounded varia-
tion V(f) on I* in the sense of Hardy and Krause, then for any xq,...,xy € I*
we have

. <V(f)Dy(x1,...,Xn).

1 N
3 ) - ) S

Why is this inequality so important ? For the Monte Carlo numerical integra-
tion, which is based on “random numbers”, one cannot derive an a-priori’ error
bound on the integration error. It is only possible to state a probabilistic error
bound, a shortcoming that is often not acceptable. The inequality of Koksma-
Hlawka on the other hand, is a hard bound on the integration error. Thus in
order to get such a bound for the Monte Carlo method, one has to calculate the
discrepancy for the numbers used, which is not feasible in practice. The way out
is to use a set of numbers for which bounds on the discrepancy are known in

advance, such as (¢, m, s)-nets or PRNGs for which such bounds are available.

On the other hand, if we want our PRNG to model a U|0, 1| distributed random
variable as closely as possible, the law of the iterated logarithm provides us with
the correct order of magnitude for the discrepancy. One can argue that any results
concerning the discrepancy of a particular generator which shows a rate of growth
close to O(N~'/21oglog N) is a sign for the right amount of “randomness” in the
generator. Empirical evidence seems to support this argument. In any case,
the discrepancy is certainly the most widely used figure of merit in theoretical
analysis of pseudorandom number generation algorithms.

"A-priori in the sense of “before the random numbers are actually drawn”.
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3.3.2 Auxiliary Results

In order to prove discrepancy bounds, we need a variety of auxiliary results.
Unfortunately it is not possible to include the proofs for these lemmata without
exceeding the scope of this thesis, as well as alienating the target audience. Thus
we will only list the results and give references to the proofs.

The basic approach to derive discrepancy bounds for PRNG is due to Nieder-
reiter [69], who established a link between the discrepancy of a finite sequence
of points with rational coordinates and certain exponential sums. As most com-
mon PRNG use integer arithmetic combined with a final scaling operation, this
approach is perfectly suited for the study of the output of such generators.

Niederreiter’s proof [69, §3.2] is elementary, although rather tricky. Hellekalek
[38] gave a proof based on dyadic harmonic analysis. A detailed proof can be
found in Weingartner [86].

In correspondence with the literature [70, 69], we will use the following defini-
tions: For a prime p > 5 let C¥(p) be the set of all nonzero h = (hy,..., h,) € Z°
with |h;| < p/2 for 1 < i < s. For such h, put r(h,p) = I[;_, r(h;,p) with
r(h,p) = psin(w|h|/p) for h nonzero and r(0,p) = 1. Furthermore, set x(n) =
e2™V=In/p for n € Zy, and let u-v denote the standard inner product of u,v € R°.

Although some of the Lemmata below do not need this restriction, we will
consider only the case of prime moduli here.

Lemma 3.1 For a prime p > 2 and yo,y1,..-,YN-1 € Z,, let 2 be the finite

sequence (X, = yn/p)N=". Then

s 1 _N—l .
Dy 11+ 2 g )

The following Lemma is due to Niederreiter [70, Lemma 2] which improves
[69, Corollary 3.11].

Lemma 3.2 Let p > 5 be a prime and let yo,y1,...,ynN-1 € Z;,. Suppose the
real number B is such that

N-1

Z x(h-y,)

n=0

< B for allh € C}(p).

Then the discrepancy Dy of the finite sequence (X, = yn/p)N=y satisfies

B[4 0.64\°
Dy<1—(1-=1/p)f+=[—=1 1.38 + — | .
N<1—( /p)+N<7T20gp+ +p>
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In order to derive the bound B for the EICG we need the following two Lem-
mata, the first one is due to Cochrane [7], the second is a variant of the Bomberi-
Weil bound for exponential sums (see Moreno and Moreno [67, Theorem 2)):

Lemma 3.3 For any prime p > 5 and any integer N we have

P! sin(ruN/p)

2 sin(mu/p)

u=1

4
< — plogp + (0.38)p + 0.64.
s

Lemma 3.4 Let C_)/R be a rational function over Z, which is not of the form
AP — A with A € Z,(x). Let s be the number of distinct roots of the polynomial
R in Z,. Then we have

where s* = s and § = 1 if deg(Q) < deg(R), and s* = s+1 and 6 = 0 otherwise.

The Koksma-Hlawka inequality can be used to derive a lower bound on the
discrepancy of a finite sequence of points. All that is needed is a function with a
known integral and bounded variation. In light of the previous lemmata it seems
natural to use a function for which the Monte Carlo integration can be expressed
in terms of exponential sums. The following result is due to Niederreiter [69, Cor.
3.17].

Lemma 3.5 For a prime p > 2 and yo,y1,...,yn-1 € Z,, let Q be the finite
sequence (X, = yn/p)2=y. Then, for any nonzero h € Z°, we have

1 N-1

N T;X(h'Yn)

where m s the number of nonzero coordinates of h.

< 2((r + 1" — )r(w) Dy (Q),

™

Unfortunately, we cannot prove a lower bound on the generic sum Y- x(h-y,)
for finite sequences of points generated by an EICG. But we are able to prove
such bounds for a slightly different exponential sum Ey(x;d,e), which we can
link to sequences generated by an EICG, and which is a special case of the sum in
Lemma 3.5. This approach is due to Eichenauer-Herrmann and Niederreiter [22].
All lemmata and theorems concerning lower bounds are taken from this paper.

Ford = (dy,...,d;) € Z; and e = (ey,...,¢e;) € Z, we define

N-1 s
En(x;d,e) := Z X (Z djﬁ) for 1 <N <p, (3.11)

and put E(x;d,e) := E,(x;d,e).
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Lemma 3.6 Ifd # 0 and ey, ..., e, distinct, then
|E(X1 dJe)| S (25 — 2)p1/2 + s+ 1

and

4 0.64\ N
En(x;d, )] < 2sp'/? (— logp +0.38 + —) +— (25 =2)p"* +1) + 5.
D p

See [22] (Theorem 1 and Corollary 1) for the proofs, which are similar to the proofs
of Theorems 3.2 and 3.3. Besides these upper bounds, we know the average value
of the En(x;d,e), according to the next Lemma.

Lemma 3.7 Let 1 < N <pand1l < k < s, e,d € Z; with fized diyq, ..., ds.
Then we have

S |Ex(x;d,e) = Np*.

Proof: We set d;,,, :==d;(n+e; —m+e;). Withe= (ey,...,e;) we get

= Z_ Z X ( dj,m,n
- 2 > f[ X(djm,n)

n,m:U dl ..... dkEijzl

= ZO( ﬁ X(dj,m,n)) Z HX ],mn

n,m= j=k+1

3

2

_ 0><<Z Nt m>> > Y

n, j=k+1 ) di,.., dip—1€ZLp dp€Lp j=1

3
Il

=

f
M

OX ( Z X §,m, n)) ) Z 1:[ X(dj,m,n) Z X(d(”+€k - m—i—ek))

j=k+1 ) di. dp_1 j=1 dEZp
€lp
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- S ) T £ - )

n,m=0 =k+1 Jj=1 \d€Z,
N-1 k
= 2 xO) I | X x(0)
i =1 \deZp
= Ny,
because we have 3 ,cz x(d-k) =0 for k € Z,, k # 0 and p otherwise. |

Applying Lemma 3.5 on a finite sequence of points generated by parallel
streams of EICG according to Definition 3.1, and h = (1,1,0,...,0) € Z* we
get for s > 2

+yn

2(7r+2

1
2(r +2)N

N-1

> x(ain + by + asn + by)
n=0

1
= ———|Ex(;d 3.12
2(7T+2)N| N(X; 7e)| ( )
with d = (a1,az) € Z; and e = (b1ay, bo@3) € Zj. Similarly, for h = (1,0,...,0) €
7Z° and s > 1 we have

DY (x1,...,xn |En(x; ar, biay)|. (3.13)

)_2N

3.3.3 Bounds

We now have the tools necessary to derive upper and lower bounds on the discrep-
ancy of finite sequences of points generated by parallel streams of EICG numbers.
But as a reference, let us first look at the result available for the LCG, which will
once again serve as a reference.

According to [69, Theorem 7.4] we have for the multiplicative linear congru-
ential generator the following statement: For s > 2 and for an average multiplier
a, the discrepancy of the finite sequence of s-dimensional points consisting of all
M — 1 overlapping tuples from leg(M, a, 0, 1) obeys

D@ =0 (M~ (log M)* loglog(M + 1)),

where the implied constant depends only on s.

Upper Bounds

We first turn our attention to upper bounds; we will prove both bounds for the
full, as well as or parts of the period. These bounds are relevant in two ways:
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1. A small discrepancy in the s-dimensional case guarantees the uncorrelat-
edness of these s-tuples. Basically, the EICG passes a generalized serial
test, as the parallel streams encompass more than just tuples formed from
consecutive numbers.

2. For s-dimensional quasi-Monte Carlo integration, a bound on the discrep-
ancy equates to a bound on the integration error.

Please note that the following theorems do not depend on the choice of any
parameters; they are valid for every single full period EICG. This is in sharp
contrast to the bounds known for the LCG, which is only deals with the average
over all multipliers, and thus tells us nothing about a particular generator. Fur-
thermore, in the case of the LCG no bounds are known for parts of the period in
dimensions s > 2.

As one can guess from the lemmata listed above, the proofs involve exponential
sums which need to be rearranged in a way to be able to use Lemma 3.4.

The following two theorems are due to Niederreiter [70].

Theorem 3.2 For p > 5, prime, and 2 < s < p set X, = y,/p based on the y,

of Definition 3.1. Then we have for the discrepancy of the finite sequence (xn)ﬁ;ﬁ

the following upper bound:

) s (2s—2 s+1) (4 0.64\"
Dé)gl—(l—l/p) +<p1/2 + D )(;logp+1.38+7>

Proof: For h = (hy,..., hs) € C*(p) put

Sh) =3 x(h-y.)= > x (Z hiy,(f)> .

n€lyp nely i=1

We now restrict the sum to those terms where y(¥) # 0 by using the same set
W as in the proof of Theorem 3.1 as the summation domain. By noting that
card(Z, \ W) = s and using the triangle inequation we get

[S(h)] < s+

(i) | 2 (3]

new 1=1 n€Zp
R(n)#0

where ()/R is the rational function over Z, given by

Q) & My _ .
R~ Zages VRO =Ilertn. @1
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As all a; are nonzero, we have deg(R) = s < p. Furthermore, as at least one of
the h; is nonzero, the uniqueness of the partial fraction decomposition for rational
functions implies that @) # 0 and deg(Q) < s = deg(R). In order to apply Lemma
3.4, we have to show that /R is not of the form A? — A with A € Z,(x), where
Z, denotes the algebraic closure of the field Z,, and Z,(x) denotes the field of
rational functions over Zp. If this were the case, we would have

Q <K )p K

7=

L

L
with polynomials K, L over Z, and ged(K, L) = 1, and thus
[’Q = (K" — " Y)KR. (3.15)

Since we have demanded ged(K, L) = 1, L cannot divide K or (KP~! — [P~1),
thus L? must divide R. As deg(R) = s < p, that can only be the case if L is a
nonzero constant polynomial which implies deg(L?) = 1. Comparing the degrees
in (3.15) yields deg(Q)) > deg(R), which contradicts the degrees derived from
(3.14). Thus we can apply Lemma 3.4, and this leads to

S(h) < (25 —2)p'/* +s+1 forallh € C*(p). (3.16)
The rest follows from Lemma 3.2. ]

Theorem 3.3 For p > 5, prime, and 2 < s < p let the finite sequence (x, =
yn/p)’;;%) be like in Theorem 3.2. Then we have for the discrepancy of the first
N points the following upper bound:

DYy < 1-(-1/py

25 =2 s+1 s 45 4 0.64
<p1/2 » +N(2p +1) plogp+0.38+— .

p

4 0.64\°
<—2 logp +1.38 + —)
™ p

Proof: Just as in the proof of Theorem 3.2 we need to derive a bound for
an exponential sum to be able to apply Lemma 3.2. This time the summation
domain is not Z,, thus we need to rewrite the sum in a rather tricky way.

For h = (hy,..., hs) € C¥(p) put

N-1

Su(h) = 3 x(h-ya) = X x(r)

n=0
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with r, = %, hyy® for n > 0. We can now rewrite Sy(h) using the fact that
>uez, X(uk) evaluates to 0 for k # 0 and to p otherwise.

Sn(h) = X(n)

- ;ZZ: ]:_0 X(—ut)) (ngszx(rwrun))
- Joo B (F o) (5 x0m)

In the last line the summand for u = 0 was pulled out; the term S(h) is the same
as in the proof of Theorem 3.2. As we need an upper bound on |Sy(h)|, we apply
the triangle inequation, yielding

Sy (h )|<—|S Z

N—

>

t=0

> x(ry + un)|, (3.17)

nEZyp

and examine each of the terms on the right side.

We want to apply Lemma 3.4 on the rightmost term: For 1 < u < p—1 we
have, by the same argument as following (3.14)

Z X(rn + un)

nEZyp

Q(n)>

< s+ =,

<o+ = x(f
R(n)#0

where ()/R is the rational function over Z, given by

Q) ~  h . .
R(z) ; P +ux  with R(z) = izl_[l(azx + b;).

Once again, we claim that @/ R is not of the form AP — A with a rational function
A € Zy(z). From the definition of R and () we have deg(R) = s and deg(Q) =
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s+ 1, as all the neither the a; nor u can be zero. For if we had

Q <K>P K

B =

L

L

with polynomials K, L over Z, and ged(K, L) = 1, then the argument following
(3.15) shows that L is a nonzero constant polynomial. Thus we have

Q = (€1Kp + BQK)R

for suitable ey, e; € Z, with ey, e; # 0. Comparing the degrees of the polynomials
in this equation we get deg(e; KP + e2 /) = 1, which implies deg(K) > 1, hence
deg(e1 KP + e K) = pdeg(K) > 1. This contradiction proves that we can apply
Lemma 3.4, yielding

> x(r +un)| < s(2pt? +1) forl<u<p-1 (3.18)

nEZyp

Furthermore, by rewriting the sum over ¢ using some elementary equivalences like
x(z)—1= 2/ =la _ ] — gn/=Te. (emV=1e — e=mVlo) — enV=le . 0\ /[T sin 1, we

get

_ Z e27n/iut/p
=0

N-1 ‘ N-1

2@-

-1

_ Z (627r\/—_1u/p)t

t=0
627r\/—1uN/10 _ 1‘

e2mV/=lu/p _ 1
™/ —1uN/p 2v/—1
eﬂﬂu/p 2\/__]_
sin(muN/p)
sin(mu/p)

sin(muN/p) ‘
sin(mu/p)

(3.19)

We now return to (3.17) to put the pieces together. Combining everything with
an application of Lemma 3.3 we get

|Sn(h)| <
(3.17) N —LIN=
< Z Z > x(rn +un)
p =11¢=0 nEZp
(3.18) N 12 —LIN=
< 5|5( ) +s2p" +1)- ZZ

=0
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1 .

3.19) N 12 1% sm(mLN/p)‘

=" —[Sh)|+s2p/"+1)- —
L SB[ +s(2p >pu§l sin(ru/p)
N

4
IS @) + 5207 + 1) (Pplogp +(0.38)p+ 0.64>

AE Aw
s g

N 4
> ((25 — 2?4 s+ 1) + s(2p'? +1) <pplogp + (0.38)p + 0.64) .

for all h € C¥(p), and thus we can apply Lemma 3.2 to obtain the desired upper
bound on Dg\f). ]

Lower Bounds

The theorems covering lower bounds are formulated in a different way. Instead
of giving hard bounds for all EICG, these theorems state how many EICGs there
must be exceeding a threshold value for the discrepancy. This kind of statement
follows from the basic approach to the problem, namely combining upper bounds
on exponential sums with their average values.

Lower bounds guarantee that the PRN are not perfectly equidistributed, they
contain the irregularities found in “random” numbers, too.

The following three theorems are due to Eichenauer-Herrmann and Nieder-
reiter [22].

Theorem 3.4 Let ay € Z,,by € Ly, and ¢ € Zy, \ {beaz} be fized. Let 0 < t <

p/(p—1), and set
A() m p*—(p—pt®
14 : (2p1/2+3)2 _pt2'
Then there exist more than A,(t) values of ay € Z;, such that for s-tuples from

the corresponding parallel stream of EICG numbers with by = ajc and s > 2 we
have

'
D¥ > L e
P =5t ?

Proof: We rewrite the theorem in terms of Ey by using (3.12). Thus we have
d = (di,dy) = (a1,@3), and e = (ey,e2) = (b1ay, byaz) € Z; with e; # €5, and
we need to show that there are more than A,(t) values for d, € Zj such that
E(x;d,e)| > tp/2.

Now suppose there exist at most A,(t) values of d; € Z; with |E(x;d,e)| >
tp'/?, i.e., there exist at least (p— 1) — A, (t) values of d; with |E(x;d, e)| < tp*/2.
From Lemma 3.6 (with s = 2) we know that |E(x;d,e)| < 2p'/? + 3 for every
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dy € Z,. Hence, observing that d; = 0 contributes nothing to the sum, we obtain

S E(gd,e)P= Y |E(gd e)|* < (p—1—-A,1)t*p+A,(t) (qp"/*+3)* = p?,

d1EZyp d1€Z;

which contradicts Lemma 3.7 (with s =2, k =1, and N = p). [ ]

Theorem 3.5 Let ay € Z,,by € Zy, ¢ € Ly \ {bo@z} and an integer N with

1 4 0.64 2

- (2}91/2 (—2 logp + 0.38 + —> + 2> <N<p

p ™ p

be fived and set
2
1 4 0.64
™ o= —2 22 [ = logp +0.38 + —— | +2
1) 2 p

p—1 Np-
N(p—1)(ry — t?)
(4p'72 (& logp +0.38 + ©54) 4 Mop1/2 4 1) 4 2)2 — N2

AN(t) =

for 0 < t < /Ty. Then there exist more than Ayn(t) values of a; € Z,, such
that for s-tuples from the corresponding parallel stream of EICG numbers with
by = aic and s > 2 we have

DY >t N

M=+ 2)
Proof: The proof is analogous to the last one. The only real difference is the
handling of d; = 0, where we need to apply Lemma 3.6 with s = 1. [

Using (3.13) instead of (3.12) we get a slightly different result. As the proof
contains no new ideas, we omit it, too.

Theorem 3.6 Let ¢ € Zy, and 1 < N < p be fized. For real numbers t fulfilling
0<t<\/(p—N)/(p—1) set

N(p—N)-N(p-1)t*

B = '
n(®) (2p1/2 (% logp 4+ 0.38 + O'T?KL) + 5+ 1)2 — N#?

Then there exist more than By(t) values of ay € Z;, such that for s-tuples from
the corresponding parallel stream of EICG numbers with by = ajc and s > 2 we
have

DY > % N2,

Restricting oneself to the ordinary serial test, i.e. is considering only overlap-
ping s-tuples instead of vectors from parallel streams, it is possible to improve
Theorem 3.6. See [22, Corr. 9] for details.
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3.4 Other Results

For congruential generators modulo a prime p, the following definition, due to
Niederreiter [69], specifies another criteria which can be used to classify PRNGs.

Definition 3.4 For given s > 1, a congruential generator producing the sequence
Yo, Y1, - - € Ly, passes the s-dimensional lattice test if the vectors y, — yo,n =
1,2,..., span the s-dimensional vector space Z,, where

Yn = (ynayn+17---7yn+571) EZ; forn=0,1,....

Theorem 3.7 An FICG with modulus p passes the s-dimensional lattice test
exactly for all s < p — 2. This is the optimal behaviour under this test.

Proof: As explained in 1.3.4, one can visualize any congruential generator
modulo p with period length p as a permutation polynomial mapping n to y,. In
the case of the EICG, this polynomial has degree d = p — 2 as we can write the
the EICG formula as

Y = an + b = (an + b)P~?

according to the theorem of Euler-Fermat. The rest follows immediately from
a theorem by Eichenauer, Grothe, and Lehn [13], which can also be found in
Niederreiter [69, Theorem 8.2]. n



Chapter 4

Empirical Tests

As explained is section 2.3.2, testing a pseudorandom number generator is a tricky
task. Even if one decides which properties one wants to test for, designing the
test itself involves a fair amount of statistic knowledge as to how the test should
be parameterized as well as how the results should be judged.

In this chapter, we will try to give a survey of empirical tests concerning the
EICG carried out by various authors. Since it will be inappropriate to spend too
much time on discussing all design decisions in detail, we will only describe the
motivation, the test procedure, and the results. For more information we refer
to the original authors.

Another compilation of empirical test results concerning inversive generators
can be found in [20].

4.1 Digit Test

The Digit Test, due to Leeb! [57, 25, 60], tries to assess the distribution quality
of a PRNG by looking at the g-adic representation of its output. If we only allow
g = 2!, one digit in base g corresponds to [ binary digits, which we can obtain
by cutting out [ consecutive bits in the computer representation of the numbers.
This is a very efficient procedure which can be done by simple bitwise AND and
shift operations. Let’s visualize this by an example, using 8 = 23 as the base
and selecting the second digit which is corresponds to the three bits starting at

!The author wants to thank Hannes Leeb for his help in writing this section, was well as for
the Postscript graphics reprinted here.

26
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position k = 4.

Decimal Binary Base 8 | selected digit
0.5859375 | 0.100 101 10 | 0.454
0.82421875 | 0.110 100 11 | 0.646
0.21484375 | 0.001 101 11 | 0.156
0.765625 0.110 001 00 | 0.610
0.16015625 | 0.001 010 01 | 0.122
0.48046875 | 0.011 110 11 | 0.366

AN = O R Ot

Ideally, we expect the last column to be uniformly distributed over all possible
digits. Furthermore, we can assume that if the original numbers are uncorrelated,
this will hold for the sequence of digits, too. On the other hand, if we can prove
that something is wrong with the digit sequence, this does not shed a good light
on the original numbers.

What have we gained by mapping numbers to digits 7 Basically this mapping
plays the role of the “bins” discussed on page 20 and 28. As discussed there,
this mapping is used to make the problem manageable by drastically reducing
the number of possible values for each number. Now we can easily count the
occurrences of each different digit and perform correlation tests on them.

As a correlation test Leeb used the idea of the serial test (see p. 21) with
non-overlapping s-tuples. To measure the distribution of the s-tuples, a x? test
was used; the resulting y%-value was called t;(s, k,[), the level-1 test statistic.
This procedure was repeated 64 times, and all the y? values were compared to
their expected distribution by a two-sided Kolmogorov-Smirnov test, yielding
to(s, k, 1), the level-2 test statistic on which we will focus in the graphics.

Let’s summarize all the parameters which must be specified to turn the ab-
stract idea of the Digit Test into a computer program.

e First of all, we have to specify the generator we want to test. Leeb used
both a selection of popular linear congruential generators as well as inversive
generators. In Table 4.2 the LCG are sorted according to their performance
in the spectral test [9]; the smaller the value for 1/ the better is the lattice
structure of the generator in dimension 3.

e Next, the number of bits to cut out is selected. This block-length [ de-
termines the base (2!) of the digits to test. In his calculations, Leeb used
le{1,2,...,10}.

e Now that we know how many bits we want from each number, the next
step is to determine which bits to cut out. Leeb termed this parameter the
block-start k, which he chose from the set {1,2,...,21}.
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e We are now able to generate a sequence of digits (or bit-blocks) according
to the parameters specified so far. The next step is to combine consecu-
tive digits to vectors by forming non-overlapping s-tuples. Leeb chose to
use dimensions s up to 10. As the dimension increases, the number of bins
needed for the counting process grows exponentially; thus Leeb had to re-
strict the range of the block-length [ with increasing s in order to keep the
computation feasible.

e Next we need to determine how many s-tuples we should generate. The
common rule of thumb for y? tests is to make sure that the each of the 2
bins can expect at least 5 hits. As we expect equidistribution amongst the
bins, we get a lower bound on how many tuples we should generate. Leeb
decided to generate 6-2° tuples, which were in turn generated using s-6-2*
numbers from the PRNG.

e We have now finished the first level (¢;) of the Digit Test. For the second
level (t,), we need to repeat the above procedure with a distinct sample of
PRN to be able to use the KS test. Leeb chose to use 64 repetitions which
guarantees that the KS approximation is valid.

It should be clear by now that the hierarchical design of the complete testing
procedure results in huge resource requirements both computationally as well as
memory-wise to actually run the test. See Table 4.1 for the actual parameters
used, and Table 4.2 for the generators tested. The computations were carried out
using the PLAB [56] PRNG testing framework, which is based on the author’s
generator library.

digit test parameters

dimension s ‘ block-start k ‘ block-length [
1 1,5,9,...,21 1,2,...,10
2 1,5,9,...,21 1,2,...,10
3 1,5,9,...,21 1,2,...,7
4 1,5,9,...,21 1,2,...,5
5 1,5,9,...,21 1,2,...,4
6 1,5,9,...,21 1,2,3
(7) (1), (5), (9., (21) | (1),(2),(3)
(8) (1), (5), 9., (21) | (1), (2)

1,2,...,10,(11) 1,5,9,...,29 2

Table 4.1: Digit test parameters (parentheses indicate that only ¢, was computed)
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generators
nickname | generator | period | 1/v;
RANDU LCG(2%,65539,0,1) 229 0.0920575
ANSI LCG(231,1103515245,12345,12345) | 23! 0.00132673
MINSTD | LCG(23%' —1,16807,0,1) 231 —210.00156518
FISH LCG(2% —1,950706376,0,1) 231 — 21 0.000768506
EICG1 EICG(2* —1,1,0,0) 231 —1
ICG ICG(23' —1,1,1,0) 231 1

Table 4.2: Generators used in the Digit test

For the graphics, the ¢; value was transformed according to the expected
x? distribution to yield a value which should be asymptotically equidistributed.
Thus all points in the graphics on the left hand side should vary freely between
0 and 1. Values close to 0 signify a distribution of the s-tuples which is much to
well-balanced, whereas values close to 1 indicate gross irregularities. The right
hand graphics depict the KS-statistic ¢, for which the critical region at the 1%
level of significance is [1.63,00). Any generator which features high values there
(especially when reaching the cut-off point 2 in the graphics) fails in the test.

As Leeb in [57], we present here only a selection of the results, namely those
for dimension s = 3. For each generator, the values of k£ and [ were varied.

Interpretation: The digit test seems to be sensible to intrinsic properties of
the LCG, as even the best one (FISH) fails the test for certain parameters. Leeb
conjectures in [57] that the digit test is sensible on grid structures or long-range
correlation as these are two features which are present in all LCG but are proven
to be absent in inversive generators. Especially the lattice quality parameter
1 /v, seems to correlate with the digit test results. The better the lattice is (small
values for 1/vy), the higher the values for [ and £ must be to uncover deficiencies
in the generator.
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1.5
21 K, 21 t2(3,k, 1)

bl ock-start k bl ock-start k

Figure 4.1: ¢, and ¢, for RANDU in dimension 3

21 21

13

bl ock-start k bl ock-start k

9

bl ock-1ength | bl ock-1ength |

Figure 4.2: t; and t, for ANSI in dimension 3

L5
2 2 12(3,k, 1)

13

bl ock-start k bl ock-start k

5

bl ock-length |

Figure 4.3: t; and t5 for MINSTD in dimension 3
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21

bl ock-start k

61

21

13

bl ock-start k

Figure 4.4: ¢, and t, for FISH in dimension 3

1

0.8
0.6t1(3,k, 1)
0.4

21

bl ock-start k

21

bl ock-start k

Figure 4.5: t; and ¢, for EICG1 in dimension 3
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bl ock-start k

21

13
bl ock-start k

Figure 4.6: ¢, and t, for ICG in dimension 3
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4.2 Overlapping Serial Test

The overlapping serial test, first proposed by Marsaglia [65] as the “M-tuple
test”, is in its basic setup quite similar to the digit test described above. The
main difference is to use overlapping tuples. This modification is rather small in
the implementation, but requires some statistical work to calculate the expected
distribution as the tuples are no longer independent.

We will describe here the empirical tests done by Wegenkittl [84, 85, 60]. As
the testing procedure was very similar to the digit test setup, we will only list
the differences here. Whereas Leeb in the digit test used only one way to extract
bits from the stream of pseudorandom numbers, Wegenkittl used two:

e Digit(Start, Length) is the same method as used in the digit test, namely
cutting out Length bits starting at position Start from each number.

e BitStream(Number, Length) extracts more than one set of Length bits from
each number, thus reducing the number of PRN needed to generate the
tuples. This is achieved by cutting out Number times Length bits starting
from the first bit. Furthermore, this method makes it feasible to test the
numbers for correlations between the high-order and low-order bits.

This time these blocks of bits were used to generate variable number of tuples.
Whereas in the digit test the sample size M was always tuned to the subsequent 2
test, Wegenkittl generated up to M = 2%° tuples. From these tuples, a modified
x? statistic t§°) was computed, resulting in the test-statistic x,. Whereas the
“normal y? test statistic” does not converge to a x? distribution for overlapping
tuples due to the correlations, this modified one does (see [84, p. 57| for details).
This procedure was repeated 32 times and the resulting empirical distribution of
the x, values was compared to the theoretical one using a KS test.

The following graphics? depict the results for all the generators used in the
digit test, as well as for EICG7 which stands for eicg(23! — 1,7,0).

The left hand diagrams show the values for each of the 32 calculated t§°) test
statistics as the lightness of each small rectangle. A white square signifies a low
value for t§”), meaning perfect equidistribution of the tuples, whereas a black one
signifies extreme deviations. The transformation t§°> — lightness was chosen in
such way that each gray-scale level should be equally likely. Unfortunately, these

diagrams are not available for all parameters.

In the right hand diagrams these 32 values were distilled into one single KS
value representing the quality of their distribution. The critical region at the 1%
level of significance is in this case [1.58, c0).

2We like to thank Stefan Wegenkittl for providing the Postscript graphics, as well as for his
helpful comments on this section.
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Figure 4.12: BitStream(4,4): Dimensions 4 and 5
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Figure 4.18: BitStream(8,4): Dimensions 4 and 5
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Interpretation: Like the Digit Test, the overlapping serial test does uncover
deficiencies in the linear generators. Whereas the setup in the Digit Test focused
on the number of bits you can take from a number while still getting good distri-
butions, Wegenkittl turned his attention to the number of tuples one can generate
before the PRNG fails. The results are basically the same: even the best LCG
has a limited load-capability; if you start to do heady-duty computations using
many PRN you must be careful not to run into the breaking point of the LCG.
The traditionally rule of thumb concerning which percentage of the period length
one can safely use (up to y/period) seems to be sound for the LCG.

The inversive generators are not perfect either, even they tend to fail the test
at some point. But their load-capability is much better. Even when taking a
high number of samples, their distribution quality decreases quite slowly.

4.3 Run Test

A completely different kind of empirical test is the run test. The basic idea
behind this test is to check if the occurrences of runs conforms to its expected
value. There is a variety of different ways to implement this idea, but we will
only describe the idea and Entacher’s implementation [23].

First of all, what do we mean by “runs” 7 In a binary context, that is sequence
consisting only of two symbols, a run is defined as a subsequence consisting only
of one symbol. For example, consider the sequence

(1, 0,0,0,1,1,1,1,0,0, 1, 0, 1, 0,0,0,1,1,1,1)
e e e S e e —

in which the brace indicate the runs.

As the common pseudorandom sequences are far from being binary, one has
to transform them first. A straight forward way of doing this is

T > sign(zp 1 — Ty),

which is binary as x,y; # x, for PRNG we consider. A run of 1s of length £
corresponds to a monotonically increasing subsequence of length k£ 4+ 1 in the
original sequence called a “run up”. The distribution properties of these runs in
a sequence of “really random numbers” is well known.

According to Wolfowitz [62] (see also Knuth [49, p. 68]) Entacher constructed
an asymptotically y2-distributed test statistic U, which involves counts for as-
cending runs up to length r. The calculation done by Entacher involved evaluat-
ing U 100 times for each generator and testing this empirical distribution against
the expected one using a KS test.
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We will focus on Entacher’s results concerning the behaviour of LCGs and
EICGs. The list of generators tested include the previously defined generators
FISH, ANSI, MINSTD, and RANDU, as well as two other LCGs with a bad lattice
structure: LCG5 = lcg(231,23! — 3,0,1) and LCG6 = lcg(23 — 1,221 + 1,0,1).
As examples for the EICG Entacher used eicg(23! — 1,a,0,0) with parameter
a € {2°,210,215 220 925 930} which he labeled EICG1 to EICGS.

The following figures® depict the results; The sample size was varied between
212 and 2?* (the labels are log,(N)), the height of each square shows the resulting
KS statistic. If the square is coloured dark gray, then the KS statistic exceeds
the critical value for the significance level 0.01.
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Figure 4.19: LCGs and EICGs in the Run Test

Interpretation: The run test seems to be able to distinguish good LCGs from
bad ones. All basically randomly chosen EICG pass the test without any prob-
lems, showing again that the EICG is not sensitive to the parameter selection.

Another conclusion from this test is that subsequences taken by a leap frog
technique are save when using EICGs, whereas such sequences taken from an
LCG may exhibit a bad lattice and can fail the run test. See an upcoming paper
from Entacher [23] for details.

30nce again we want to thank the author of the original paper, Karl Entacher, for his
support and the graphics files.
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4.4 Weighted Spectral Test

As mentioned on page 43, the weighted spectral test is a promising new approach
to assess the quality of pseudorandom numbers, see Hellekalek [39, 40], Hellekalek
and Niederreiter [45], and Hellekalek and Leeb [43]. One numerical realization of
the weighted spectral test is the diaphony, see Hellekalek and Niederreiter [45].

Both the diaphony as well as the classic spectral test [9] approach the point
set from a Fourier point of view, looking for any disturbances in the spectrum. If
the point set has lattice structure (as in the case of LCGs), the first wavelength
which yields a non-zero Fourier coefficient corresponds to the largest distance
between hyperplanes. Where the classic spectral test targets just this wavelength,
the diaphony tries to include more information, namely a weighted sum over all
possible wavelengths. High wavelengths (which correspond to low frequencies)
in the point set indicate a large scale imbalance, whereas high frequencies target
fine structures in the set. As these fine structures are unavoidable at the certain
point, higher frequencies are considered less important and thus will contribute
little to the diaphony.

So basically the s-dimensional diaphony is a weighted sum over the correlation
coefficients of the point set, which are basically the Weyl sums Sy we encountered
in Section 3.3, see [40] for details.

There are close ties between the discrepancy and the diaphony. One can
bound one in terms of the other (see Stegbuchner [78]), one can interpret it, too,
as integration error (see James, Hoogland and Kleiss [46]), and it is possible to
derive Lemmata similar to those in section 3.3.2 (see [40]).

Whereas it is virtually impossible to do any reasonable empirical studies with
discrepancy due to its computational complexity of O(N*), the diaphony only
needs O(s- N?) steps to calculate it. Thus it is possible to conduct empirical test

using this figure of merit. In the following we will describe the results obtained
by Hellekalek [39].

The test procedure was as follows: For a given generator, for a given dimension
s, and a given sample size N, the diaphony F% was evaluated for 20 samples of
non-overlapping s-tuples. As the expected value for Fix equals 1/N, Hellekalek
multiplied the diaphony by /N to get the same expected value for all sample sizes,
see Leeb [59] for the theoretical distribution.

In the graphics®, the abscissa shows the sample size as log, N and the ordinate
the average value over the 20 samples. For each generator from the now familiar
set (see Table 4.2) the calculation was done in dimensions 2 (A), 3 (o), 4 (x), 5
(¢), and dimension 6 ().

“We like to thank Peter Hellekalek for the permission to use his graphics, as well as for
providing the mathematical background.
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Figure 4.20: Diaphony for RANDU
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Figure 4.21: Diaphony for ANSI
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Figure 4.22: Diaphony for MINSTD
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Figure 4.23: Diaphony for FISH
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Figure 4.24: Diaphony for ICG
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Figure 4.25: Diaphony for EICG1
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4.5 Other Results

Frank Hértel [36] implemented an impressive array of PRNG and compared their
performance under a variety of statistical tests. Unfortunately he used only one
EICG (eicg(1000081,240318,197,0)), whose modulus (p < 2?°) is far too small
to be able to compete with generators featuring a period length of 232, We will
therefore not elaborate on his results.

Both Eichenauer-Herrmann and L’Ecuyer presented results of empirical test
concerning the minimal distance between vectors of PRN on the MC&QCM’96
conference in Salzburg. Although the results have not been published yet, one
can summarize them as follows: due to their lattice structure, LCGs are not
able to simulate the correct behaviour of the test statistic whereas EICGs with
the same period length pass this test with flying colors. I refer to the upcoming
proceedings for details.



Chapter 5

Implementation

This section discusses the implementation of the EICG pseudorandom number
generator using a standard procedural programming language. We will use C
syntax for the code printed here.

The algorithms presented here were used to write a generic and portable PRNG
library which implements not only the EICG, but other congruential generators,
too. This library (written in ANSI C) is available on the Internet from the PLAB
WWW server at http://random.mat.sbg.ac.at/.

5.1 Overview

If we look at the definition of the EICG (see p. 1.3.4), we see that gener-
ating the numbers is a two step procedure. First we have to compute the
Yn = a(ng +n) + b, a calculation operating in the finite field Z, which can be
done by standard integer calculation modulo p. The second step is the scaling
operation x, := y,/p, which we will implement as a straight forward floating
point division.

We will thus focus on the first step, which includes the following three opera-
tions

1. Inversion modulo p
2. Multiplication modulo p
3. Addition modulo p.

How they are best implemented depends on how numbers are represented in the

computer. We use integer arithmetic based on the native integer format of the
computer. Most current workstations use 32-bit integers which can hold numbers
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from —23! to 231 —1. This limits the choice of the modulus to values smaller than
231 a common choice is the Mersenne prime 23! — 1. Large values for p give the
resulting PRN a fine resolution, but one has to pay for this with an increase in
calculation time. If this resolution, as well as the period length it implies, are
not adequate, one can use the technique of combining generators (see p. 16), to
generate even better pseudorandom numbers.

5.2 Modular Inversion

First we turn to the problem of modular inversion (denoted throughout this text
by overlining (@) the operand) which is defined as

_ [ at fora#£0
““10 for a = 0,

1

where @™+ is the uniquely defined element of Z; = Z,\{0} such that @ mod p = 1.

The special case a = 0 is easily handled, what remains is to find a~* for a # 0.
There are two different ways to compute the inverse, one of them is to utilize the
fact that

a*® =1 (mod p)

by the well-known theorem of Euler-Fermat, and thus a*®~' = @ (mod p)
holds. In our case here the modulus is prime, thus ¢(p), Euler’s totient function,
is equal to p — 1, which gives us

a=a’"? (mod p).

Evaluating a® (mod p) is a well-known exercise in computational number theory
(e.g. in the RSA cryptosystem). It can be solved in logarithmic time [8, p.
829], but intermediate results exceed the domain [—p,p]. This fact renders an
implementation difficult because of the limited integers available on a computer.

A different approach is to use an extended version of Euclid’s algorithm. This
algorithm is usually used to calculate the greatest common divisor of two num-
bers, but it can also be used to calculate the integers x and y which fulfill the
linear diophantic equation ax + by = ged(a,b). By substituting p for b and
observing that ged(a,p) = 1, one gets

ar +py =1,

which can be rewritten as
ar =1 (mod p).

This algorithm to calculate x and y is based on the following recursion: The
division with remainder a = ¢b + r is used to calculate ¢ and r. If we can find
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/*
* Extended FEuclid’s Algorithm, Recursive version.
*

* From: ”Algorithms” by Corman, Leiserson, & Rivest [8]. page 812
*
* Input:

* a,b  Two integers
*

* Qutput:

* int d,x,y  which satisfy ged(a,b) = d = ax + by 10
*

¥/

void rec_eeuclid (int a,int b,int *d,s_int *x,s_int *y)

int dbar,xbar,ybar;

if (0 ==D)
{
*d = a;
*x = 1; 20
*y =05
return;
}
rec_eeuclid(b,a%b,&dbar,&xbar,&ybar);
*d = dbar;
*x = ybar;
*y = xbar — (a/b) * ybar;
30

Figure 5.1: Euclid’s algorithm, recursive version.

2" and y' which fulfill 2’b + y'r = 1, then z = ' and y = 2’ — ¢y’ will satisfy
xa +yb = 1. Since b < a and r < b the question how to find the 2’ and 3" will
lead to a trivial case.

Figure 5.1 shows a straight-forward recursive implementation of the extended
Euclid’s algorithm. Figure 5.2 demonstrates how the modular inversion can be
based on rec_eeuclid.

This recursive implementation is not very efficient due to the overhead caused
by the repeated function calls. Although rec_eeuclid is not end-recursive, it is
possible to rewrite it as an iterative function [49]. Figure 5.3 is a C implementation
of the modular inversion using this method. A further optimization [76, p. 521]
is to unroll the loop twice to avoid unnecessary swapping of the variables in each
iteration.
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/*
* Modular Inversion. Based on Euclid’s Algorithm
*

* Input:

* a,p Two int, gcd(a,p) should be 1!
*

* Qutput:
* int o’ which satisfies:
* a’*a=1 (foral=0)
* a’ =0 (fora==20) 10
*
¥/
int inverse(int a,int p)
{
int ged,inv,temp;
if (a==0)
return(0);
rec_eeuclid(a,p,&ged, &inv,&temp); 20
if (inv < 0)
inv += p;
if (ged I=1)
fputs("inverse: Can’t invert !", stderr);
return(inv);
}

Figure 5.2: Modular inversion based on rec_eeuclid

Gordon [34] describes a modification which uses shift operations to avoid mul-
tiplications and divisions. This does pay on certain computers, for example on
SPARC, R4000, or Alpha AXP based systems this approach is faster. On the
other hand, the division on the 1486 is comparatively fast, thus the original version
runs faster there.

The number of recursive calls in Euclid’s algorithm is of the order O(lgb), see
[8, p. 810]. An equivalent statement is, that the arguments of these calls decrease
exponentially. Another way to put this is that rec_eeuclid will need about the
same number of recursive calls to get from b ~ 16384 to b &~ 128 as it needs from
b =~ 128 to the end of the recursion.

This observation leads to another technique to speed up the computation of
the multiplicative inverse: For all a, b smaller than some threshold we use a table
of precomputed values for x and y instead of continuing the recursion. This way
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some recursive calls can be avoided.

Threshold | Memory used | Avg. Steps | Std.dev. | Time
No Table - 17.57 3.27 43.76 s
16 256 Bytes 16.72 3.10 45.40 s
32 1 KByte 16.11 3.04 43.84 s
64 4 KByte 15.52 2.98 42.32 s
128 16 KByte 14.93 2.92 41.03 s
256 64 KByte 14.35 2.86 39.71 s
012 512 KByte 13.77 2.80 39.31 s

Table 5.1: Average number of recursive calls in Euclid’s Algorithm.

To test the advantages of this approach, we compared it with the optimized
iterative implementation. Table 5.1 lists the timings of my test case, that is
calculating the multiplicative inverses of 2147483 uniformly distributed numbers
modulo 23! — 1.

As long as the threshold is not larger than 256, a byte is enough to hold an
element of the table. A threshold of 512 forces the program to resort to 16-bit
integers which doubles the memory requirements. It is hard to make a general
statement which threshold is best, too much depends on the cache size, memory
access speed, and on memory available. We have set the default to 256, which
seems to result in a reasonable tradeoff between memory and speed.

Our experience has shown that there is no single “best” algorithm, too much
depends on the relative execution speed of various elementary operations. Thus
our implementation includes three different algorithms as well as a profiling pro-
gram which can be used to select the one which is running fastest on the user’s
computer.

5.3 Modular Multiplication

The problem of evaluating a-n  (mod p) lies in the limited range of the integers
available in common programming languages. The intermediate result an of the
straightforward implementation is very likely not to fit in machine size integers, so
one has to devise an algorithm to calculate an  (mod p) in which all intermediate
results are representable on a b-bit computer.

One approach is the following algorithm due to Bratley, Fox, and Schrage [4,
Sec. 6.5.2] which can compute an (mod p) if a®* < p. The idea is to factor
the modulus, but since this is not possible with primes, one has to deal with
remainders, too. Let

p=aq+r
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where
g =pdiva and r = p mod a.

Then one can rewrite an  (mod p) as
an (mod p) = an —p(andivp)
= an —p(ndivg) +p (ndivg — andivp)

"

s(n)
= an—aq(ndivg) —r(ndivg) +pd(n)
= a(n—q(ndivg)) —r(ndivg) + pd(n)
= a(nmodq) —r(ndivg) + pd(n)
= 7(n) +pd(n)
If r < ¢, which is a direct consequence of a* < p, evaluating v(n) does not pose

a numerical problem, for
a(nmodgq) <ag<p
and
r(ndivq) < ¢(ndivg) <n < p,
and thus |y(n)| € {0,...,p — 1}. Since an (mod p) € {0,...,p — 1} evaluating
d(n) is unnecessary, because d6(n) = 0 iff y(n) > 0 and §(n) = 1 iff y(n) < 0.
This leads to the following algorithm:

| y(n) if y(n) >0
an (mod p) = { v(n) +p otherwise

¢ and r can be precomputed, calculating (ndivg) and (n mod ¢) requires on
some computers only one instruction, so this is a very efficient algorithm.

For the usual choice of 23! — 1 for p the above can be applied for all a < 2'°.
If p is smaller than that, then the limitation that all intermediate results should
be between —p and p is unnecessarily tight. On a b-bit computer all integers
between —2°~! and 2°~! (exclusive) are representable. If we loosen the restriction
on a from a? < p to a? < 22, the term r (ndiv¢) is no longer bounded by p.
But it can be shown that 2°~! is an upper bound:

r(ndivg) < r(pdivg)

r((ag + ) divg)
r(a+rdivq)
a (a + adivq)
2a*

21)71

<
<
<
<

We can now conclude that —2°~! < y(n) < pandan (mod p) =y(n) (mod p).
Thus one possible algorithm is this:
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1. Calculate ¢ and r
2. z =a(nmod q) — r (ndivq)
3. while(xr <0) xz=x+p
The while loop can execute at most [2°71/p] times. L’Ecuyer and Coté [55]

observed that in the average case very few iterations are executed, thus this
algorithm is efficient.

If @ is not restricted in any way (except of course by the requirement a < p) one
can use decomposition to reduce the multiplication to cases for which we already
have solutions. This can be achieved by writing a in base 2¢, where d = (b—2)/2
(usually 15 on current 32-bit computers):

a = ag + a,2% 4 a,2%*
with 0 < ag,a; < 2¢, and ay € {0,1}. Then
an  (mod p) =

224 mod p

= (agn) mod p + ((a;n) mod p)2? mod p + ((agn) mod p)
= ((((a22n) mod p + (a;n) mod p) mod p)2¢ mod p + agn mod p) mod p.

In all four products modulo p one of the factors is bounded by 2¢, so the previously
discussed algorithm can be applied. Figure 5.4 shows a C implementation of this
method. It is used whenever it is not possible to resort to a simpler algorithm.

5.4 Modular Addition

Modular addition is simple to solve, though it is not trivial. A straightforward
implementation might look like this:

l.x=a+0

2.if (x> p) thenz =2 —p
This is correct, as long as a+ b is still fully representable with the data type used.
Assuming that the usual signed integer type is used, an overflow would occur if
a + b is negative. It cannot happen that a 4 b is positive in spite of an overflow,
since a and b are both smaller than 2°~! — 1 (assuming a b-bit computer) and
(26=1 — 1) + 1 wraps to —2°~L. If we detect an overflow, subtracting p will bring
the result back into the interval [0, p — 1]. Thus this

l.z=a+0

2. if ((x <0) or (x >p)) thenx =2 —p

is a correct implementation.
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/%
* Modular Inversion. Direct implementation using Euclid’s alg. [34]
*
* Input:
* a,p Two integers
*
* Qutput:
*  Modular inverse of a modulo p. (0 if a == 0)
*
*/ 10
int inverse2(int a,int p)
{
int q,d,u,v,inv,t;
if (a <=1) return(a);
d=p;inv=0;v=1;u=a;
do
{
q=d / u; 20
t=d%u; /* On my Linuz box this is faster than d — q*u */
d=u;
u=t;
t = inv — q*v;
inv = v;
v =1t;
} while (u != 0);
if (inv < 0) inv += p;
30

if (1!=4d)
fprintf(stderr,"Can’t invert %d modulo %d !\n",a,p);

return(inv);

}

Figure 5.3: Modular inversion based on Euclid’s algorithm (iterative version).
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/%
* Modular Multiplication: Decomposition method (from L’Ecuyer € Cote [55])
*

* Input:
*  a,n,p Three integers. a,n < p.
*

* Qutput:
*  (a*n) mod p
*

*/ 10
int mult_mod(int a,int n,int p)

int H,a0,a1,q,qh,rh k,x;

H=32768; /*2"15%/

if (a < H)
{a0 =a;x=0;}
else
{ 20
al=a/H;a0d=a— H *al,
gh=p /H;rh=p—H*qh;
if (al >=H)
{
al =al —H; k =n / gh;
x = H*(n— k*qh) — k * rh;
while(x < 0) x += p;
}
else
X = 0, 30
if (all=0)
{
q=p/alik=n/gq;
x = x —k*(p—al*q); if (x>0) x—=p;
x = x + al*(n—k*q); while (x<0) x+=p;
}
k =x / qh; x = H*(x — k*qh) — k*rh;
while (x<0) x+=p;
¥ 10
if (a0 !=0)
q=p/a0;k=n/qg;
X =X —k*(p—aO*q); if (X>O) X—=p;
x = x + a0*(n—k*q); while (x<0) x+=p;
}
return(x);
}

Figure 5.4: Decomposition method for modular multiplication.



Chapter 6

Summary

Let us quickly summarize the main points of this thesis.

e The application defines the quality criteria for the PRNG. There
is no such thing as the perfect (“one size fits all”) pseudorandom number
generator; one should always consider the application when choosing a gen-
erator.

e Testing a PRING is a tricky task. While testing can increase the con-
fidence in the generator, it is often not possible to construct a test which
targets the same properties in the number as will be relevant in the appli-
cation.

e Do not rely on a single family of PRNG ! As a consequence of the
previous two remarks, one should never trust the result of a simulation
without verification runs using a completely different PRNG.

e The definition of the EICG.

Let p be a (large) prime and a,b,ny € Z,. The explicit inversive congruential
generator (abbreviated as “EICG”) with parameters p,a,b, and ny defines a
sequence (Yn)n>o0 0 Ly, by

Un:=a-(ng+n)+b (n>0)

and a sequence eicg(p, a, b, ng) = (z,)n>0 of pseudorandom numbers in [0, 1]
by
T, = — (n >0),
where © denotes the multiplicative inverse modulo p extended by 0 := 0.
e The choice of parameters is easy for the EICG. As long as a # 0, the

period length will always be p. There are no theoretical results indicating
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that some parameters might result in bad distribution properties. This is
a major advantage over the LCG, where every set of parameters must be
extensively screened using the spectral test.

EICGs with the same modulus are closely related. These relation in-
clude shifting the sequence (different ngy or b), and taking every k-th number
(different value for a).

Taking subsequences from EICGs is safe. As a consequence of the
last two statements, the EICG is perfectly suited to generate streams of
PRN. This can be done by taking either every k-th number or starting at
a different position in the stream. In both cases, the individual streams are
guaranteed to be uncorrelated.

Tuples of EICG numbers show strong non-linear properties. See
Theorems 3.1 and 3.7 for details.

The order of magnitude of the discrepancy of N s-tuples of EICG
numbers is close to the optimal value. For true random number we have
an order of magnitude between N~%/2 and N~'/2\/loglog N. Examining tu-
ples formed using the full period of the EICG we get D{*) = O(p~"/*(log p)*)
as an upper bound, and an existence statement which implies that this bound
is the best possible up to the logarithmic factor.

For parts of the period we get similar results: as an upper bound we have
D) = O(N-1p'/2(logp)**1), and we can show the existence of EICGs with

D) > ¢N=Y2 for some constant c.

EICGs perform well in empirical tests. In all comparisons to linear
generators with about the same period length the inversive generators have
clearly proved their superiority.

The EICG is not particularly difficult to implement. Short and
efficient algorithms for all steps involved have been published. A portable
implementation (ANSI-C) is available from the author.

The EICG algorithm runs at a reasonable speed. The multiplicative
inversions takes about log p steps; the EICG is thus considerably slower than
the LCG. Whether this difference is noticeable in the overall computation
time depends heavily on the amount of processing done in the simulation
problem itself.

Combining EICGs is safe. Using compound techniques it easy to achieve
long periods; excellent properties of the resulting numbers are guaranteed
[17, 18].
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